• Title/Summary/Keyword: Evolutionary computations

Search Result 28, Processing Time 0.024 seconds

Application of Adaptive Evolutionary Algorithm to Economic Load Dispatch with Nonconvex Cost Functions (NonConvex 비용함수를 가진 전력경제급전 문제에 적응진화 알고리즘의 적용)

  • Mun, Gyeong-Jun;Hwang, Gi-Hyeon;Park, Jun-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.11
    • /
    • pp.520-527
    • /
    • 2001
  • This paper suggests a new methodology of evolutionary computations - an Adaptive Evolutionary Algorithm (AEA) for solving the Economic Load Dispatch (ELD) problem which has piecewise quadratic cost functions and prohibited operating zones with many local minima. AEA uses a genetic algorithm (GA) and an evolution strategy (ES) in an adaptive manner in order to take merits of two different evolutionary computations: global search capability of GA and local search capability of ES. In the reproduction procedure, proportions of the population by GA and the population by ES are adaptively modulated according to the fitness. Case studies illustrate the superiority of the proposed methods to existing conventional methods in power generation cost and computation time. The results demonstrate that the AEA can be applied successfully in the solution of ELD with piecewise quadratic cost functions and prohibited operating zones

  • PDF

Design of FLC for High-Angle-of-Attack Flight Using Adaptive Evolutionary Algorithm

  • Won, Tae-Hyun;Hwang, Gi-Hyun;Park, June-Ho;Lee, Man-Hyung
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.187-196
    • /
    • 2003
  • In this paper, a new methodology of evolutionary computations - An Adaptive Evolutionary Algorithm (AEA) is proposed. AEA uses a genetic algorithm (GA) and an evolution strategy (ES) in an adaptive manner in order to take merits of two different evolutionary computations : global search capability of GA and local search capability of ES. In the reproduction procedure, the proportions of the population by GA and ES are adaptively modulated according to the fitness. AEA is used to. designing fuzzy logic controller (FLC) for a high-angle-of-attack flight system for a super-maneuverable version of F-18 aircraft. AEA is used to determine the membership functions and scaling factors of an FLC. The computer simulation results show that the FLC has met both robustness and performance requirements.

Optimal Design of SRM using Evolutionary Computations and CAD program (유전자 알고리즘과 상용설계도구를 이용한 SRM의 최적화 설계)

  • Kim, Tae-Hyoung;Ahn, Jin-Woo;Hwang, Gi-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.21-23
    • /
    • 2004
  • In this paper, an optimal design method to have good performance is researched. The parameters which are sensitive to the performance are examined and selected by using evolutionary computations and commercial CAD program to have good performance. Design method Simulated are compared with conrrentional procedure.

  • PDF

Development of AC Transmassion Line Audible Noise Prediction Formulas Using Evolutionary Computations

  • Yang, Kwang-Ho;Park, June-Ho;Hwang, Gi-Hyun;Kim, Jeong-Boo
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.6
    • /
    • pp.116-122
    • /
    • 1997
  • The audible noise produced by corona discharge in high voltage transmission lines is the most important line design consideration. In this paper, more accurate and useful formulas for predicting the A-weighted audible noise during heavy and light rain in alternative current (AC) transmission lines are proposed through comparison with the existing formulas. The proposed formulas are developed by the applications of evolutionary computations (ECs) to audible noise data base from long-term measurement.

  • PDF

A Shaking Optimization Algorithm for Solving Job Shop Scheduling Problem

  • Abdelhafiez, Ehab A.;Alturki, Fahd A.
    • Industrial Engineering and Management Systems
    • /
    • v.10 no.1
    • /
    • pp.7-14
    • /
    • 2011
  • In solving the Job Shop Scheduling Problem, the best solution rarely is completely random; it follows one or more rules (heuristics). The Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Simulated Annealing, and Tabu search, which belong to the Evolutionary Computations Algorithms (ECs), are not efficient enough in solving this problem as they neglect all conventional heuristics and hence they need to be hybridized with different heuristics. In this paper a new algorithm titled "Shaking Optimization Algorithm" is proposed that follows the common methodology of the Evolutionary Computations while utilizing different heuristics during the evolution process of the solution. The results show that the proposed algorithm outperforms the GA, PSO, SA, and TS algorithms, while being a good competitor to some other hybridized techniques in solving a selected number of benchmark Job Shop Scheduling problems.

Structure Pruning of Dynamic Recurrent Neural Networks Based on Evolutionary Computations (진화연산을 이용한 동적 귀환 신경망의 구조 저차원화)

  • 김대준;심귀보
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.4
    • /
    • pp.65-73
    • /
    • 1997
  • This paper proposes a new method of the structure pruning of dynamic recurrent neural networks (DRNN) using evolutionary computations. In general, evolutionary computations are population-based search methods, therefore it is very useful when several different properties of neural networks need to be optimized. In order to prune the structure of the DRNN in this paper, we used the evolutionary programming that searches the structure and weight of the DRNN and evolution strategies which train the weight of neuron and pruned the net structure. An addition or elimination of the hidden-layer's node of the DRNN is decided by mutation probability. Its strategy is as follows, the node which has mhnimum sum of input weights is eliminated and a node is added by predesignated probability function. In this case, the weight is connected to the other nodes according to the probability in all cases which can in- 11:ract to the other nodes. The proposed pruning scheme is exemplified on the stabilization and position control of the inverted-pendulum system and visual servoing of a robot manipulator and the effc: ctiveness of the proposed method is demonstrated by numerical simulations.

  • PDF

Comparison of Evolutionary Computation for Power Flow Control in Power Systems (전력계통의 전력조류제어를 위한 진화연산의 비교)

  • Lee, Sang-Keun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.54 no.2
    • /
    • pp.61-66
    • /
    • 2005
  • This paper presents an unified method which solves real and reactive power dispatch problems for the economic operation of power systems using evolutionary computation such as genetic algorithms(GA), evolutionary programming(EP), and evolution strategy(ES). Many conventional methods to this problem have been proposed in the past, but most of these approaches have the common defect of being caught to a local minimum solution. The proposed methods, applied to the IEEE 30-bus system, were run for 10 other exogenous parameters and composed of P-optimization module and Q-optimization module. Each simulation result, by which evolutionary computations are compared and analyzed, shows the possibility of applications of evolutionary computation to large scale power systems.

A Design of Fuzzy Power System Stabilizer using Adaptive Evolutionary Computation (적응진화연산을 이용한 퍼지-전력계통안정화장치 설계)

  • Hwang, Gi-Hyun;Park, June-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.6
    • /
    • pp.704-711
    • /
    • 1999
  • This paper presents a design of fuzzy power system stabilizer (FPSS) using adaptive evolutionary computation (AEC). We have proposed an adaptive evolutionary algorithm which uses a genetic algorithm (GA) and an evolution strategy (ES) in an adaptive manner in order to take merits of two different evolutionary computations. FPSS shows better control performances than conventional power system stabilizer (CPSS) in three-phase fault with heavy load which is used when tuning FPSS. To show the robustness of the proposed FPSS, it is appliedto damp the low frequency oscillations caused by disturbances such as three-phase fault with normal and light load, the angle deviation of generator with normal and light load and the angle deviation of generator with heavy load. Proposed FPSS shows better robustness than CPSS.

  • PDF

An Optimal Real and Reactive Power dispatch using Evolutionary Computation (진화연산을 이용한 유효 및 무효전력 최적배분)

  • You, Seok-Ku;Park, Chang-Joo;Kim, Kyu-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.166-168
    • /
    • 1996
  • This paper presents an power system optimization method which solves real and reactive power dispatch problems using evolutionary computation such as genetic algorithms(GAs), evolutionary programming(EP), and evolution strategy(ES). Many conventional methods to this problem have been proposed in the past, but most these approaches have the common defect of being caught to a local minimum solution. Recently, global search methods such as GAs, EP, and ES are introduced. The proposed methods, applied to the IEEE 30-bus system, were run for 12 other exogenous parameters. Each simulation result, by which evolutionary computations are compared and analyzed, shows the possibility of applications of evolutionary computation to large scale power systems.

  • PDF

A Fuzzy Logic Controller for Speed Control of a DC Series Motor Using an Adaptive Evolutionary Computation

  • Hwang, Gi-Hyun;Hwang, Hyun-Joon;Kim, Dong-Wan;Park, June-Ho
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.1
    • /
    • pp.13-18
    • /
    • 2000
  • In this paper, an Adaptive Evolutionary Computation(AEC) is proposed. AEC uses a genetic algorithm(GA) and an evolution strategy (ES) in an adaptive manner is order to take merits of two different evolutionary computations: global search capability of GA and local search capability of ES. In the reproduction procedure, proportions of the population by GA and ES are adaptively modulated according to the fitness. AEC is used to design the membership functions and the scaling factors of fuzzy logic controller (FLC). To evaluate the performances of the proposed FLC, we make an experiment on FLC for the speed control of an actual DC series motor system with nonlinear characteristics. Experimental results show that the proposed controller has better performance than that of PD controller.

  • PDF