• 제목/요약/키워드: Evolutionary

검색결과 2,235건 처리시간 0.028초

아동발달에 대한 진화 발달적 관점 (Evolutionary Developmental Perspectives on Child Development)

  • 신혜은;최경숙
    • 아동학회지
    • /
    • 제26권5호
    • /
    • pp.185-204
    • /
    • 2005
  • This paper demonstrated how application of evolutionary knowledge to developmental perspectives enhances understanding of human ontogeny. Evolutionary Developmental Psychology (EDP) explains human behavior through evolutionary principles and focuses on ontogeny rather than phylogeny. In this paper, the authors review concepts of evolution, adaptations, and the processes of evolution from EDP perspectives. The definition and basic assumptions of EDP are introduced, followed by explanations of how evolution happens in ontogeny by looking at developmental systems approaches, concepts of ontogenetic and deferred adaptations, evolution of childhood, and brain plasticity. Possible pathways of evolution in ontogeny are also discussed. Finally, some research methodology for applying EDP to child development is suggested with specific hypotheses and studies.

  • PDF

Deep Learning-based Evolutionary Recommendation Model for Heterogeneous Big Data Integration

  • Yoo, Hyun;Chung, Kyungyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권9호
    • /
    • pp.3730-3744
    • /
    • 2020
  • This study proposes a deep learning-based evolutionary recommendation model for heterogeneous big data integration, for which collaborative filtering and a neural-network algorithm are employed. The proposed model is used to apply an individual's importance or sensory level to formulate a recommendation using the decision-making feedback. The evolutionary recommendation model is based on the Deep Neural Network (DNN), which is useful for analyzing and evaluating the feedback data among various neural-network algorithms, and the DNN is combined with collaborative filtering. The designed model is used to extract health information from data collected by the Korea National Health and Nutrition Examination Survey, and the collaborative filtering-based recommendation model was compared with the deep learning-based evolutionary recommendation model to evaluate its performance. The RMSE is used to evaluate the performance of the proposed model. According to the comparative analysis, the accuracy of the deep learning-based evolutionary recommendation model is superior to that of the collaborative filtering-based recommendation model.

Optimal Design of a 2-Layer Fuzzy Controller using the Schema Co-Evolutionary Algorithm

  • Park Chang-Hyun;Sim Kwee-Bo
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권3호
    • /
    • pp.403-410
    • /
    • 2005
  • Nowadays, versatile robots are developed around the world. Novel algorithms are needed for controlling such robots. A 2-Layer fuzzy controller can deal with many inputs as well as many outputs, and its overall structure is much simpler than that of a general fuzzy controller. The main problem encountered in fuzzy control is the design of the fuzzy controller. In this paper, the fuzzy controller is designed by the schema co-evolutionary algorithm. This algorithm can quickly and easily find a global solution. Therefore, the schema co-evolutionary algorithm is used to design a 2-layer fuzzy controller in this study. We apply it to a mobile robot and verify the efficacy of the 2-layer fuzzy controller and the schema co-evolutionary algorithm through the experiments.

진화 연산의 성능 개선을 위한 하이브리드 방법 (A Hybrid Method for Improvement of Evolutionary Computation)

  • 정진기;오세영
    • 한국지능시스템학회논문지
    • /
    • 제12권4호
    • /
    • pp.317-322
    • /
    • 2002
  • The major operations of Evolutionary Computation include crossover, mutation, competition and selection. Although selection does not create new individuals like crossover or mutation, a poor selection mechanism may lead to problems such as taking a long time to reach an optimal solution or even not finding it at all. In view of this, this paper proposes a hybrid Evolutionary Programming (EP) algorithm that exhibits a strong capability to move toward the global optimum even when stuck at a local minimum using a synergistic combination of the following three basic ideas. First, a "local selection" technique is used in conjunction with the normal tournament selection to help escape from a local minimum. Second, the mutation step has been improved with respect to the Fast Evolutionary Programming technique previously developed in our research group. Finally, the crossover and mutation operations of the Genetic Algorithm have been added as a parallel independent branch of the search operation of an EP to enhance search diversity.

초기투자비 제약을 고려한 입지..경로..재고문제의 내공생진화 알고리듬 해법 (Endosymbiotic Evolutionary Algorithm for the Combined Location Routing and Inventory Problem with Budget Constrained)

  • 송석현;이상헌
    • 대한산업공학회지
    • /
    • 제37권1호
    • /
    • pp.1-9
    • /
    • 2011
  • This paper presents a new method that can solve the integrated problem of combined location routing and inventory problem (CLRIP) efficiently. The CLRIP is used to establish facilities from several candidate depots, to find the optimal set of vehicle routes, and to determine the inventory policy in order to minimize the total system cost. We propose a mathematical model for the CLRIP with budget constrained. Because this model is a nonpolynomial (NP) problem, we propose a endosymbiotic evolutionary algorithm (EEA) which is a kind of symbiotic evolutionary algorithm (SEA). The heuristic method is used to obtaining the initial solutions for the EEA. The experimental results show that EEA perform very well compared to the existing heuristic methods with considering inventory control decisions.

진화 알고리듬을 위한 새로운 트리 표현 방법 (A New Tree Representation for Evolutionary Algorithms)

  • 석상문;안병하
    • 대한산업공학회지
    • /
    • 제31권1호
    • /
    • pp.10-19
    • /
    • 2005
  • The minimum spanning tree (MST) problem is one of the traditional optimization problems. Unlike the MST, the degree constrained minimum spanning tree (DCMST) of a graph cannot, in general, be found using a polynomial time algorithm. So, finding the DCMST of a graph is a well-known NP-hard problem of importance in communications network design, road network design and other network-related problems. So, it seems to be natural to use evolutionary algorithms for solving DCMST. Especially, when applying an evolutionary algorithm to spanning tree problems, a representation and search operators should be considered simultaneously. This paper introduces a new tree representation scheme and a genetic operator for solving combinatorial tree problem using evolutionary algorithms. We performed empirical comparisons with other tree representations on several test instances and could confirm that the proposed method is superior to other tree representations. Even it is superior to edge set representation which is known as the best algorithm.

내공생 진화알고리듬을 이용한 유연조립시스템의 공정계획과 일정계획의 통합 (The Integrated Process Planning and Scheduling in Flexible Assembly Systems using an Endosymbiotic Evolutionary Algorithm)

  • 송원섭;신경석;김여근
    • 산업공학
    • /
    • 제17권spc호
    • /
    • pp.20-27
    • /
    • 2004
  • A flexible assembly system (FAS) is a production system that assembles various parts with many constraints and manufacturing flexibilities. This paper presents a new method for efficiently solving the integrated process planning and scheduling in FAS. The two problems of FAS process planning and scheduling are tightly related with each other. However, in almost all the existing researches on FAS, the two problems have been considered separately. In this research, an endosymbiotic evolutionary algorithm is adopted as methodology in order to solve the two problems simultaneously. This paper shows how to apply an endosymbiotic evolutionary algorithm to solving the integrated problem. Some evolutionary schemes are used in the algorithm to promote population diversity and search efficiency. The experimental results are reported.

안전도 신호 분석을 통한 지능형 로봇 제어 기법의 개발 (Development of Intelligent Robot Control Technology By Electroocculogram Analysis)

  • 김창현;이주장;김민성
    • 제어로봇시스템학회논문지
    • /
    • 제10권9호
    • /
    • pp.755-762
    • /
    • 2004
  • In this research, EOG(Electrooculogram) signal was analyzed to predict the subject's intention using a fuzzy classifier. The fuzzy classifier is built automatically using the EOG data and evolutionary algorithms. An assistant robot manipulator in redundant configuration has been developed, which operates according to the EOG signal classification results. For automatic fuzzy model construction without any experts' knowledge, an evolutionary algorithm with the new representation scheme, design of adequate fitness function and evolutionary operators, is proposed. The proposed evolutionary algorithm can optimize the number of fuzzy rules, the number of fuzzy membership functions, parameter values for the each membership functions, and parameter values for the consequent parts. It is shown that the fuzzy classifier built by the proposed algorithm can classify the EOG data efficiently. Intelligent motion planner that consists of several neural networks are used for control of robot manipulator based upon EOG classification results.

A Hybrid of Evolutionary Search and Local Heuristic Search for Combinatorial Optimization Problems

  • Park, Lae-Jeong;Park, Cheol-Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제1권1호
    • /
    • pp.6-12
    • /
    • 2001
  • Evolutionary algorithms(EAs) have been successfully applied to many combinatorial optimization problems of various engineering fields. Recently, some comparative studies of EAs with other stochastic search algorithms have, however, shown that they are similar to, or even are not comparable to other heuristic search. In this paper, a new hybrid evolutionary algorithm utilizing a new local heuristic search, for combinatorial optimization problems, is presented. The new intelligent local heuristic search is described, and the behavior of the hybrid search algorithm is investigated on two well-known problems: traveling salesman problems (TSPs), and quadratic assignment problems(QAPs). The results indicate that the proposed hybrid is able to produce solutions of high quality compared with some of evolutionary and simulated annealing.

  • PDF

적응진화연산을 이용한 퍼지-전력계통안정화장치 설계 (A Design of Fuzzy Power System Stabilizer using Adaptive Evolutionary Computation)

  • 황기현;박준호
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권6호
    • /
    • pp.704-711
    • /
    • 1999
  • This paper presents a design of fuzzy power system stabilizer (FPSS) using adaptive evolutionary computation (AEC). We have proposed an adaptive evolutionary algorithm which uses a genetic algorithm (GA) and an evolution strategy (ES) in an adaptive manner in order to take merits of two different evolutionary computations. FPSS shows better control performances than conventional power system stabilizer (CPSS) in three-phase fault with heavy load which is used when tuning FPSS. To show the robustness of the proposed FPSS, it is appliedto damp the low frequency oscillations caused by disturbances such as three-phase fault with normal and light load, the angle deviation of generator with normal and light load and the angle deviation of generator with heavy load. Proposed FPSS shows better robustness than CPSS.

  • PDF