• Title/Summary/Keyword: Evolutionary

Search Result 2,235, Processing Time 0.035 seconds

Design of Fuzzy Controller Using Parasitic Co-evolutionary Algorithm (기생적 공진화 알고리즘을 이용한 퍼지 제어기 설계)

  • 심귀보;변광섭
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.11
    • /
    • pp.1071-1076
    • /
    • 2004
  • It is a fuzzy controller that it is the most used method in the control of non-linear system. The most important part in the fuzzy controller is a design of fuzzy rules. Many algorithm that design fuzzy rules have proposed. And attention to the evolutionary computation is increasing in the recent days. Among them, the co-evolutionary algorithm is used in the design of optimal fuzzy rule. This paper takes advantage of a schema co-evolutionary algorithm. In order to verify the efficiency of the schema co-evolutionary algorithm, a fuzzy controller for the mobile robot control is designed by the schema co-evolutionary algorithm and it is compared with other parasitic co-evolutionary algorithm such as a virus-evolutionary genetic algorithm and a co-evolutionary method of Handa.

An Evolutionary Acquisition Strategy for Defense Information Systems (국방정보시스템의 진화적 획득전략)

  • Cho, Sung-Rim;Sim, Seung-Bae;Kim, Sung-Tae;Jeong, Bong-Ju
    • Journal of Information Technology Services
    • /
    • v.9 no.4
    • /
    • pp.187-206
    • /
    • 2010
  • Evolutionary acquisition is an alternative to the grand design acquisition approaches. It has activities to make it possible to develop quickly and respond flexibly to changing customer needs and technological opportunities. The Ministry of Defense adopted an evolutionary strategy to acquire defense information systems. but it does not work well always. We look at problems from aspects of acquisition system and project management. We benchmark successful cases for evolutionary acquisition strategy in the DoD, the pubic and the private sector. We suggest an evolutionary strategy for defense information systems. The evolutionary strategy in this study includes an evolutionary acquisition framework, an evolutionary acquisition process, and an evolutionary acquisition guideline for defense information systems. The evolutionary strategy can help to implement evolutionary acquisition process for defense information system, and the process can increase the success rate of projects.

Realtime Evolutionary Learning of Mobile Robot Behaviors (이동 로봇 행위의 실시간 진화)

  • Lee, Jae-Gu;Shim, In-Bo;Yoon, Joong-Sun
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.816-821
    • /
    • 2003
  • Researchers have utilized artificial evolution techniques and learning techniques for studying the interactions between learning and evolution. Adaptation in dynamic environments gains a significant advantage by combining evolution and learning. We propose an on-line, realtime evolutionary learning mechanism to determine the structure and the synaptic weights of a neural network controller for mobile robot navigations. We support our method, based on (1+1) evolutionary strategy which produces changes during the lifetime of an individual to increase the adaptability of the individual itself, with a set of experiments on evolutionary neural controller for physical robots behaviors. We investigate the effects of learning in evolutionary process by comparing the performance of the proposed realtime evolutionary learning method with that of evolutionary method only. Also, we investigate an interactive evolutionary algorithm to overcome the difficulties in evaluating complicated tasks.

  • PDF

A System Design of Evolutionary Optimizer for Continuous Improvement of Full-Scale Manufacturing Processes (양산공정의 지속적 품질개선을 위한 Evolutionary Optimizer의 시스템 설계)

  • Rhee, Chang-Kwon;Byun, Jai-Hyun;Do, Nam-Chul
    • IE interfaces
    • /
    • v.18 no.4
    • /
    • pp.465-476
    • /
    • 2005
  • Evolutionary operation is a useful tool for improving full-scale manufacturing process by systematically changing the levels of the process variables without jeopardizing the product. This paper presents a system design for the evolutionary operation software called 'evolutionary optimizer'. Evolutionary optimizer consists of four modules: factorial design, many variables, mixture, and mean/dispersion. Context diagram, data flow diagram and entity-relationship modelling are used to systematically design the evolutionary optimizer system.

Evolutionary Learning of Mobile Robot Behaviors (이동 로봇 행위의 진화)

  • 이재구;심인보;윤중선
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1105-1108
    • /
    • 2003
  • Adaptation in dynamic environments gains a significant advantage by combining evolution and learning. We propose an on-line, realtime evolutionary learning mechanism to determine the structure and the synaptic weights of a neural network controller for mobile robot navigations. We support our method, based on (1+1) evolutionary strategy, which produces changes during the lifetime of an individual to increase the adaptability of the individual itself, with a set of experiments on evolutionary neural controller for physical robots behaviors.

  • PDF

A System Design for Evolutionary Optimizer (Evolutionary Optimizer를 위한 시스템 설계)

  • Rhee Chang-Kwon;Byun Jai-Hyun
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 2004.04a
    • /
    • pp.503-506
    • /
    • 2004
  • Evolutionary operation is useful to improve on-line full-scale manufacturing processes by systematically changing the levels of the process variables without jeopardizing the product. This paper presents a system design for an evolutionary operation software called 'evolutionary optimizer'. The system design is based primarily on data flow diagram. Evolutionary optimizer consists of four modules: factorial design module, many variables module, mixture Production module, and mean/dispersion module.

  • PDF

An Analysis of the Evolution of a Fuzzy Logic Controller using Evolutionary Activity (진화활동성을 이용한 퍼지 제어기의 진화 분석)

  • 이승익;조성배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.05a
    • /
    • pp.113-116
    • /
    • 2001
  • This paper analyzes the evolutionary process of a fuzzy logic controller using evolutionary activity. An evolutionary algorithm is commonly used to find solutions for given problems. However, little has been done on the analysis of the evolutionary pathways to the optimal solutions. This paper uses a genetic algorithm to construct a fuzzy logic controller for a mobile robot and applies evolutionary activity to measure the adaptability quantitatively. Evolutionary activity can be defined as the rate at which useful genetic innovations are absorbed in the population. By measuring the evolutionary activities, we will show quantitatively that the optimal fuzzy logic controller is not from other genetic phenomena like chance or necessity, but from the adaptability to a given encironment.

  • PDF

Game Theory Based Co-Evolutionary Algorithm (GCEA) (게임 이론에 기반한 공진화 알고리즘)

  • Sim, Kwee-Bo;Kim, Ji-Youn;Lee, Dong-Wook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.3
    • /
    • pp.253-261
    • /
    • 2004
  • Game theory is mathematical analysis developed to study involved in making decisions. In 1928, Von Neumann proved that every two-person, zero-sum game with finitely many pure strategies for each player is deterministic. As well, in the early 50's, Nash presented another concept as the basis for a generalization of Von Neumann's theorem. Another central achievement of game theory is the introduction of evolutionary game theory, by which agents can play optimal strategies in the absence of rationality. Not the rationality but through the process of Darwinian selection, a population of agents can evolve to an Evolutionary Stable Strategy (ESS) introduced by Maynard Smith. Keeping pace with these game theoretical studies, the first computer simulation of co-evolution was tried out by Hillis in 1991. Moreover, Kauffman proposed NK model to analyze co-evolutionary dynamics between different species. He showed how co-evolutionary phenomenon reaches static states and that these states are Nash equilibrium or ESS introduced in game theory. Since the studies about co-evolutionary phenomenon were started, however many other researchers have developed co-evolutionary algorithms, in this paper we propose Game theory based Co-Evolutionary Algorithm (GCEA) and confirm that this algorithm can be a solution of evolutionary problems by searching the ESS.To evaluate newly designed GCEA approach, we solve several test Multi-objective Optimization Problems (MOPs). From the results of these evaluations, we confirm that evolutionary game can be embodied by co-evolutionary algorithm and analyze optimization performance of GCEA by comparing experimental results using GCEA with the results using other evolutionary optimization algorithms.

Using Machine Learning to Improve Evolutionary Multi-Objective Optimization

  • Alotaibi, Rakan
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.203-211
    • /
    • 2022
  • Multi-objective optimization problems (MOPs) arise in many real-world applications. MOPs involve two or more objectives with the aim to be optimized. With these problems improvement of one objective may led to deterioration of another. The primary goal of most multi-objective evolutionary algorithms (MOEA) is to generate a set of solutions for approximating the whole or part of the Pareto optimal front, which could provide decision makers a good insight to the problem. Over the last decades or so, several different and remarkable multi-objective evolutionary algorithms, have been developed with successful applications. However, MOEAs are still in their infancy. The objective of this research is to study how to use and apply machine learning (ML) to improve evolutionary multi-objective optimization (EMO). The EMO method is the multi-objective evolutionary algorithm based on decomposition (MOEA/D). The MOEA/D has become one of the most widely used algorithmic frameworks in the area of multi-objective evolutionary computation and won has won an international algorithm contest.

Comparison and Analysis of Competition Strategies in Competitive Coevolutionary Algorithms (경쟁 공진화 알고리듬에서 경쟁전략들의 비교 분석)

  • Kim, Yeo Keun;Kim, Jae Yun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.28 no.1
    • /
    • pp.87-98
    • /
    • 2002
  • A competitive coevolutionary algorithm is a probabilistic search method that imitates coevolution process through evolutionary arms race. The algorithm has been used to solve adversarial problems. In the algorithms, the selection of competitors is needed to evaluate the fitness of an individual. The goal of this study is to compare and analyze several competition strategies in terms of solution quality, convergence speed, balance between competitive coevolving species, population diversity, etc. With two types of test-bed problems, game problems and solution-test problems, extensive experiments are carried out. In the game problems, sampling strategies based on fitness have a risk of providing bad solutions due to evolutionary unbalance between species. On the other hand, in the solution-test problems, evolutionary unbalance does not appear in any strategies and the strategies using information about competition results are efficient in solution quality. The experimental results indicate that the tournament competition can progress an evolutionary arms race and then is successful from the viewpoint of evolutionary computation.