• 제목/요약/키워드: Event-related potentials

검색결과 72건 처리시간 0.021초

Role of Citrate Synthase in Acetate Utilization and Protection from Stress-Induced Apoptosis

  • Lee, Yong-Joo;Kang, Hong-Yong;Maeng, Pil Jae
    • 한국미생물학회:학술대회논문집
    • /
    • 한국미생물학회 2008년도 International Meeting of the Microbiological Society of Korea
    • /
    • pp.39-41
    • /
    • 2008
  • The yeast Saccharomyces cerevisiae has been shown to contain three isoforms of citrate synthase (CS). The mitochondrial CS, Cit1, catalyzes the first reaction of the TCA cycle, i.e., condensation of acetyl-CoA and oxaloacetate to form citrate [1]. The peroxisomal CS, Cit2, participates in the glyoxylate cycle [2]. The third CS is a minor mitochondrial isofunctional enzyme, Cit3, and related to glycerol metabolism. However, the level of its intracellular activity is low and insufficient for metabolic needs of cells [3]. It has been reported that ${\Delta}cit1$ strain is not able to grow with acetate as a sole carbon source on either rich or minimal medium and that it shows a lag in attaining parental growth rates on nonfermentable carbon sources [2, 4, 5]. Cells of ${\Delta}cit2$, on the other hand, have similar growth phenotype as wild-type on various carbon sources. Thus, the biochemical basis of carbon metabolism in the yeast cells with deletion of CIT1 or CIT2 gene has not been clearly addressed yet. In the present study, we focused our efforts on understanding the function of Cit2 in utilizing $C_2$ carbon sources and then found that ${\Delta}cit1$ cells can grow on minimal medium containing $C_2$ carbon sources, such as acetate. We also analyzed that the characteristics of mutant strains defective in each of the genes encoding the enzymes involved in TCA and glyoxylate cycles and membrane carriers for metabolite transport. Our results suggest that citrate produced by peroxisomal CS can be utilized via glyoxylate cycle, and moreover that the glyoxylate cycle by itself functions as a fully competent metabolic pathway for acetate utilization in S. cerevisiae. We also studied the relationship between Cit1 and apoptosis in S. cerevisiae [6]. In multicellular organisms, apoptosis is a highly regulated process of cell death that allows a cell to self-degrade in order for the body to eliminate potentially threatening or undesired cells, and thus is a crucial event for common defense mechanisms and in development [7]. The process of cellular suicide is also present in unicellular organisms such as yeast Saccharomyces cerevisiae [8]. When unicellular organisms are exposed to harsh conditions, apoptosis may serve as a defense mechanism for the preservation of cell populations through the sacrifice of some members of a population to promote the survival of others [9]. Apoptosis in S. cerevisiae shows some typical features of mammalian apoptosis such as flipping of phosphatidylserine, membrane blebbing, chromatin condensation and margination, and DNA cleavage [10]. Yeast cells with ${\Delta}cit1$ deletion showed a temperature-sensitive growth phenotype, and displayed a rapid loss in viability associated with typical apoptotic hallmarks, i.e., ROS accumulation, nuclear fragmentation, DNA breakage, and phosphatidylserine translocation, when exposed to heat stress. Upon long-term cultivation, ${\Delta}cit1$ cells showed increased potentials for both aging-induced apoptosis and adaptive regrowth. Activation of the metacaspase Yca1 was detected during heat- or aging-induced apoptosis in ${\Delta}cit1$ cells, and accordingly, deletion of YCA1 suppressed the apoptotic phenotype caused by ${\Delta}cit1$ mutation. Cells with ${\Delta}cit1$ deletion showed higher tendency toward glutathione (GSH) depletion and subsequent ROS accumulation than the wild-type, which was rescued by exogenous GSH, glutamate, or glutathione disulfide (GSSG). Beside Cit1, other enzymes of TCA cycle and glutamate dehydrogenases (GDHs) were found to be involved in stress-induced apoptosis. Deletion of the genes encoding the TCA cycle enzymes and one of the three GDHs, Gdh3, caused increased sensitivity to heat stress. These results lead us to conclude that GSH deficiency in ${\Delta}cit1$ cells is caused by an insufficient supply of glutamate necessary for biosynthesis of GSH rather than the depletion of reducing power required for reduction of GSSG to GSH.

  • PDF

고객 간 관계 네트워크가 조직성과에 미치는 영향: 페이스북 기업 팬페이지를 중심으로 (Effects of Customers' Relationship Networks on Organizational Performance: Focusing on Facebook Fan Page)

  • 전수현;곽기영
    • 지능정보연구
    • /
    • 제22권2호
    • /
    • pp.57-79
    • /
    • 2016
  • 최근 소셜 네트워크 서비스는 소비자와의 관계 마케팅 확산 및 확장을 위한 중요한 채널로 인식되며 많은 관심을 받고 있다. 기업이 온라인 환경에서 성공하기 위해서는 기업과 고객 사이의 관계 구축뿐만 아니라 고객들 간의 관계에 초점을 맞출 필요가 있다. 본 연구에서는 페이스북 팬 페이지에 참여하는 사용자들 사이의 네트워크를 분석하여 기업의 비즈니스 성과에 고객 간 네트워크의 구조적 특성이 미치는 영향을 실증적으로 분석하였다. 이를 위해 네트워크 데이터는 코스피 상장 기업 가운데 페이스북 팬 페이지에 100개 이상의 게시글을 올린 54개 기업으로부터 수집하였으며, 수집된 네트워크 데이터는 각 사용자를 노드로 하고 동일한 마케팅 활동에 대해 참여한 사용자간의 관계를 링크로 한 원모드 비방향 이진 네트워크(one-mode undirected binary network)이다. 본 연구에서는 이러한 네트워크 데이터를 핸들링하여 사용자들 간의 활동 관계를 분석할 수 있는 네트워크 지표(밀도, 글로벌 클러스터링 계수, 최단거리평균, 직경)를 도출하였으며, 이러한 고객 간 네트워크의 구조적 특징을 파악할 수 있는 지표와 기업의 과거실적(순이익), 그리고 미래 예측성과(토빈의 Q) 간의 관계를 분석하였다. 본 연구는 학문적 관점에서 소셜 미디어 채널을 비즈니스 관점에서 연구하려는 연구자들에게 소셜네트워크분석 방법을 통한 새로운 접근법을 제시한다. 실무적인 관점에서 본 연구는 소셜미디어를 통해 마케팅 활동을 수행하려는 기업의 관리자들에게 네트워크의 지표를 이용한 지능형 마케팅 서비스를 수행할 수 있는 토대를 제공할 것으로 기대한다.