• Title/Summary/Keyword: Event location

Search Result 340, Processing Time 0.028 seconds

Method to Improve the Location Accuracy of GPR Data for Underground Information Precise Detecting (지하정보 정밀탐사를 위한 GPR 데이터 위치정확도 개선 방안)

  • RYU, Jisong;JANG, Yonggu;PARK, Donghyun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.3
    • /
    • pp.32-40
    • /
    • 2021
  • Underground information is difficult to visually check, which can lead to a huge accident in the event of a safety accident. Recently, the Ministry of Land, Infrastructure and Transport intends to reduce safety accidents caused by the aging or damage of underground facilities through the Special Act on Underground Safety Management. GPR is increasingly being used as a technology to acquire information in underground spaces that are difficult to see with the naked eye. However, GPR's location information is corrected by checking images of CCTV and GPS information acquired during exploration. This method has an average error of about 2 meters. In this works, We used LiDAR to calibrate the GPR information and found that the error was reduced from at least 7cm to up to 40cm. If accurate GPR information collected in the future is analyzed quickly using AI, etc., it will be able to collect and utilize underground information faster than it is now to secure safety.

Analysis of Microcystis Bloom in Daecheong Reservoir using ELCOM-CAEDYM (ELCOM-CAEDYM을 이용한 대청호 Microcystis Bloom 해석)

  • Chung, Se Woong;Lee, Heung Soo
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.1
    • /
    • pp.73-87
    • /
    • 2011
  • An abnormal mono-specific bloom of the cyanobacterium Microcystis aeruginosa had developed at a specific location (transitional zone, monitoring station of Hoenam) in Daecheong Reservoir from middle of July to early August, 2001. The maximum cell counts during the peak bloom reached 1,477,500 cells/mL, which was more than 6~10 times greater than those at other monitoring sites. The hypothesis of this study is that the timing and location of the algal bloom was highly correlated with the local environmental niche that was controled by physical processes such as hydrodynamic mixing and pollutant transport in the reservoir. A three-dimensional, coupled hydrodynamic and ecological model, ELCOM-CAEDYM, was applied to the period of development and subsequent decline of the bloom. The model was calibrated against observed water temperature profiles and water quality variables for different locations, and applied to reproduce the algal bloom event and justify the limiting factor that controled the Microcystis bloom at R3. The simulation results supported the hypothesis that the phosphorus loading induced from a contaminated tributary during several runoff events are closely related to the rapid growth of Microcystis during the period of bloom. Also the physical environments of the reservoir such as a strong thermal stratification and weak wind velocity conditions provided competitive advantage to Microcystis given its light adaptation capability. The results show how the ELCOM-CAEDYM captures the complex interactions between the hydrodynamic and biogeochemical processes, and the local environmental niche that is preferable for cyanobacterial species growth.

Development of Emergency Exit Guidance Lamps using the Characteristics of Each Sensor in Case of Fire (화재 발생 시 센서별 특성을 이용한 비상구 유도등 개발)

  • Kim, Jong-Kwan;Jeong, Do-Hyeon;Yu, Yong-Woo;Yang, Min-Hyeok;Lee, Boong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.6
    • /
    • pp.1019-1028
    • /
    • 2021
  • Emergency exit guidance lights were designed and manufactured to quickly determine the location of the emergency exit in the event of a fire using a gas sensor, an illumination sensor, a temperature sensor, an Arduino Uno, and a Bluetooth module. This research was designed such that, when a fire breaks out, a red arrow appears as the illuminance value is low and a green arrow as the illuminance value is high to improve visibility when detecting high temperature and smoke. In addition, it is designed to prevent more serious conflagration by applying an alarm sound and text transmission algorithm using a communication module to transmit text messages indicating a 174Hz alarm sound and a fire location to prevent more serious conflagration.

Active Lamb Wave Propagation-based Structural Health Monitoring for Steel Plate (능동 램파 전파에 기초한 강판의 구조건전성 모니터링)

  • Jeong, Woon;Seo, Ju-Won;Kim, Hyeung-Yun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.421-431
    • /
    • 2009
  • This paper is the study on the verification of structural health monitoring (SHM) algorithm based on the ultrasonic guided wave. An active inspection system using Lamb wave (LW) for SHM was considered. The basic study about the application of this algorithm was performed for detecting the circular notch defect in steel plate. LW testing technique, pitch-catch method, was used for interpretation of circular notch defect with depth of 50% of plate thickness and 7 mm width. Damage characterization takes place by comparing $S_0$ mode sensor signals collected before and after the damage event. By subtracting the signals of both conditions from each other, a scatter signal is produced which can be used for damage localization. The continuous Gabor wavelet transform is used to attain the time between the arrivals of the scatter and sensor signals. A new practical damage monitoring algorithm, based on damage monitoring polygon and pitch-catch method, has been proposed and verified with good accuracy. The possible damage location can be estimated by the average on calculated location points and the damage extent by the standard deviation.

Temporal and Spatial Characteristics of Visual and Somatosensory Integration in Normal Adult Brain (정상성인의 시각 및 촉각 통합 작용 시 뇌신경세포의 전기생리적활동의 시간 및 공간적 특성: 예비실험)

  • Ju, Yu-Mi;Kim, Ji-Hyun
    • The Journal of Korean Academy of Sensory Integration
    • /
    • v.8 no.1
    • /
    • pp.41-49
    • /
    • 2010
  • Objective : Multisensory integration (MSI) is the essential process to use diverse sensory information for cognitive task or execution of motor action. Especially, visual and somatosensory integration is critical for motor behavior and coordination. This study was designed to explain spatial and temporal characteristics of visual and somatosensory integration by neurophysiological research method that identifies the time course and brain location of the SI process. Methods : Electroencephalography (EEG) and event-related potential (ERP) is used in this study in order to observe neural activities when integrating visual and tactile input. We calculate the linear summation (SUM) of visual-related potentials (VEPs) and somatosensory-related potentials (SEPs), and compared the SUM with simultaneously presented visual-tactile ERPs(SIM) Results : There were significant differences between the SIM and SUM in later time epochs (about 200-300ms) at contralateral somatosensory areas (C4) and occipital cortices (O1&O2). The amplitude of the SIM was mathematically larger than the summed signals, implying that the integration made some extra neural activities. Conclusion : This study provides some empirical neural evidence of that multisensory integration is more powerful than just combing two unisensory inputs in the brain and ERP data reveals neural signature relating to multisensory integrative process. Since this study is preliminary pilot study, larger population and criteria are needed for level of the significance. Further study is recommended to consider issues including effect of internally-driven attention and laterality of interaction to make the evidence by this study solid.

  • PDF

Microseismic Monitoring for KAERI Underground Research Tunnel (KURT 미소진동 모니터링)

  • Kim, Kyung-Su;Bae, Dae-Seok;Koh, Yong-Kwon;Kim, Jung-Yul
    • The Journal of Engineering Geology
    • /
    • v.19 no.2
    • /
    • pp.139-144
    • /
    • 2009
  • The microseismic monitoring system with wide range of frequency has been operating in real time and it is remotely monitored at indoor and on-site for one year. This system was constructed and established in order to secure the safe and effective operation of the KAERI Underground Research Tunnel(KURT). For one year monitoring work, total 14 events were recorded in the vicinity of the KURT, and the majority of events are regarded as ultramicroseismic earthquake and artificial impacts around the tunnel. The major event is the magnitude 3.4 earthquake which was centered around Gongju city, Chungnam Province. It means that there is no significant evidence of high frequency microseismic event, which is associated with fracture initiation and/or propagation in the rock mass and shotcrete. Three components sensor was applied in order to analyze and define the direction of vibration as well as an epicenter of microseismic origin, and also properly designed and installed in a small borehole. This monitoring system is able to predict the location and timing of fracturing of rock mass and rock fall around an undreground openings as well as analysis on safety of various kinds of engineering structures such as nuclear facilities and other structures.

Uniformity Evaluation of Elderly Hospital Outpatients' Waiting Space using Discrete Event Simulation (이산사건 시뮬레이션을 이용한 요양병원 외래부 대기공간 균일성 평가)

  • Yoon, So-Hee;Kim, Suk-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.490-499
    • /
    • 2017
  • In recent years, the introduction of complex systems analysis based on various variables has become more active in order to identify and analyze complex problems of Modern Society. Prediction of patients' spatial perception and usability according to the spatial arrangement of the outpatient department is a very important factor for providing high quality hospital service. For objective analysis, the standard program procedure and analysis index for the diseases of the elderly were prepared and the uniformity of the atmospheric space was evaluated through heat map analysis and quantitative analysis. In this study, 73 cells were installed and simulated to analyze the uniformity of the four alternatives according to the change of the arrangement of the medical care space, receiving space, and consultation space using the complex system analysis method for the nursing hospitals. The resulting density was derived. The results are as follows. 1)The layout of the reception space has the greatest influence on the total spatial density of the waiting space. 2) The uniformity of the waiting space can be increased by separating the examination space and the examination space. 3)The closer the location of the receiving space is from the entrance, the greater the density of the waiting space. Finally, this study applied discrete event simulation to the evaluation of uniformity of atmosphere space, and proved that the actor - based model can be utilized for utilization and evaluation as spatial analysis methodology.

Analysis of Leaf Node Ranking Methods for Spatial Event Prediction (의사결정트리에서 공간사건 예측을 위한 리프노드 등급 결정 방법 분석)

  • Yeon, Young-Kwang
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.4
    • /
    • pp.101-111
    • /
    • 2014
  • Spatial events are predictable using data mining classification algorithms. Decision trees have been used as one of representative classification algorithms. And they were normally used in the classification tasks that have label class values. However since using rule ranking methods, spatial prediction have been applied in the spatial prediction problems. This paper compared rule ranking methods for the spatial prediction application using a decision tree. For the comparison experiment, C4.5 decision tree algorithm, and rule ranking methods such as Laplace, M-estimate and m-branch were implemented. As a spatial prediction case study, landslide which is one of representative spatial event occurs in the natural environment was applied. Among the rule ranking methods, in the results of accuracy evaluation, m-branch showed the better accuracy than other methods. However in case of m-brach and M-estimate required additional time-consuming procedure for searching optimal parameter values. Thus according to the application areas, the methods can be selectively used. The spatial prediction using a decision tree can be used not only for spatial predictions, but also for causal analysis in the specific event occurrence location.

A Study on the Counter-Measures for International Events through the Case Studies and Its Implications for Counter-Terrorism Policy (국제 행사에 대한 테러대응 사례분석과 정책적 함의)

  • Park, Dong-Kyun;Shin, Ik-Chu
    • Korean Security Journal
    • /
    • no.14
    • /
    • pp.161-179
    • /
    • 2007
  • The numerous definition of terrorism is viewed as the use of force or violence by individual or group that is directed toward civilian populations and intended to instill fear as a means of coercing individuals or groups to change their political or social positions. Recently, the paradigm of terror has been developed as new terrorism motivated by 9. 11 terror in 2001. In these contexts, this study analyzed the case study of recent counter-terrorism of international events and suggested the policy implications. This study is split into four chapters. Chapter I is the introduction part. Chapter II introduces the reader to new terrorism theory, and Chapter III deals with the case study of the international counter-terrorism policy around the world, Chapter IV deals with the policy implications of the case study. The greater the political, economical and social advantages opening large international ceremonies, the larger the probability of being targets for terrorists and criminals. As terrorism is one of the important issue, the security problems at international ceremonies in Korea, rising country as political essence in Asian-Pacific region, become very important. With experienced know-hows against terror and preparations for security, local and central governments must promote the private security companies filling up vacancies of police and official security system and develop international ceremonies, rising high valuable industries in 21st century, with diplomatic efforts. International major events is the largest event related events with politics, economy, culture, and such large-scale events should be a comprehensive counterplan in the light of safety check for the location of a hazard and safety check of facilities in and out, attendance on athlete and visitor and escort of VIPs.

  • PDF

Development of a Flood Disaster Evacuation Map Using Two-dimensional Flood Analysis and BIM Technology (2차원 침수해석과 BIM 기술을 활용한 홍수재난 대피지도 작성)

  • Jeong, Changsam
    • Journal of Korean Society of Disaster and Security
    • /
    • v.13 no.2
    • /
    • pp.53-63
    • /
    • 2020
  • In this study, the two-dimensional flow analysis model Hydro_AS-2D model was used to simulate the situation of flooding in Seongsangu and Uichang-gu in Changwon in the event of rising sea levels and extreme flooding, and the results were expressed on three-dimensional topography and the optimal evacuation path was derived using BIM technology. Climate change significantly affects two factors in terms of flood damage: rising sea levels and increasing extreme rainfall ideas. The rise in sea level itself can not only have the effect of flooding coastal areas and causing flooding, but it also raises the base flood level of the stream, causing the rise of the flood level throughout the stream. In this study, the rise of sea level by climate change, the rise of sea level by storm tidal wave by typhoon, and the extreme rainfall by typhoon were set as simulated conditions. The three-dimensional spatial information of the entire basin was constructed using the information of topographical space in Changwon and the information of the river crossing in the basic plan for river refurbishment. Using BIM technology, the target area was constructed as a three-dimensional urban information model that had information such as the building's height and location of the shelter on top of the three-dimensional topographical information, and the results of the numerical model were expressed on this model and used for analysis for evacuation planning. In the event of flooding, the escape route is determined by an algorithm that sets the path to the shelter according to changes in the inundation range over time, and the set path is expressed on intuitive three-dimensional spatial information and provided to the user.