• Title/Summary/Keyword: Event control model

Search Result 256, Processing Time 0.028 seconds

Modeling and Control of Fixed-time Traffic Control Problem with Real-time Temporal Logic Frameworks (실시간 시간논리구조를 이용한 고정시간 교통제어 문제의 모델링 및 제어)

  • Jeong, Yong-Man;Lee, Won-Hyok;Choi, Jeong-Nae;Hwang, Hyung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.109-112
    • /
    • 1997
  • A Discrete Event Dynamic System is a system whose states change in response to the occurrence of events from a predefined event set. A major difficulty in developing analytical results for the systems is the lack of appropriate modeling techniques. This paper proposes the use of Real-time Temporal Logic as a modeling tool for the modeling and control of fixed-time traffic control problem which by way of a DEDS. The Real-time Temporal Logic Frameworks is extended with a suitable structure of modeling hard real-time constraints. Modeling rules are developed for several specific situations. It is shown how the graphical model can be translated to a system of linear equations and constraints.

  • PDF

A Method of Efficient Conference Event Package Processing in Distributed Conference Environment (분산형 컨퍼런스 환경에서의 효율적인 컨퍼런스 이벤트 패키지 처리 방식)

  • Jang, Choon-Seo;Jo, Hyun-Gyu;Lee, Ky-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.7
    • /
    • pp.199-205
    • /
    • 2008
  • The centralized conference model has advantage of conference management and control. however it's scalability has been limited as performance degrades largely with increasing number of conference users. So new distributed conference models which improve scalability of centralized conference model have been suggested recently. In the distributed conference model. as conference users exceed a predefined maximum number, a new conference server is added to the conference dynamically. In this paper, We have proposed a new method which increases efficiency of conference event package processing that primary conference server should charge in the distributed conference environment. The primary conference server exchanges informations with each secondary conference servers and conference users by using conference event package. And from the conference information database it selects SIP(Session Initiation Protocol) UA(User Agent) which will share notification to the conference users, and transfers lists to each conference servers. The conference servers make the selected UAs share processing of conference event package, so loads of SIP signal processing decrease, and improve scalability of distributed conference model. The performance of our proposed model is evaluated by experiments.

  • PDF

A Research on Designing an Autonomic Control System Towards High-Reliable Cyber-Physical Systems (고신뢰 CPS를 위한 자율제어 시스템에 관한 연구)

  • Park, Jeongmin;Kang, Sungjoo;Chun, Ingeol;Kim, Wontae
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.6
    • /
    • pp.347-357
    • /
    • 2013
  • Cyber-Physical system(CPS) is characterized by collaborating computational elements controlling physical entities. In CPS, human desire to acquire useful information and control devices anytime and anywhere automatically has increased the necessity of a high reliable system. However, the physical world where CPS is deployed has management complexity and maintenance cost of 'CPS', so that it is impossible to make reliable systems. Thus, this paper presents an 'Autonomic Control System towards High-reliable Cyber-Physical Systems' that comprise 8-steps including 'fault analysis', 'fault event analysis', 'fault modeling', 'fault state interpretation', 'fault strategy decision', 'fault detection', 'diagnosis&reasoning' and 'maneuver execution'. Through these activities, we fascinate to design and implement 'Autonomic control system' than before. As a proof of the approach, we used a ISR(Intelligent Service Robot) for case study. The experimental results show that it achieves to detect a fault event for autonomic control of 'CPS'.

Lagrangian Particle Dispersion Modeling Intercomparison : Internal Versus Foreign Modeling Results on the Nuclear Spill Event (방사능 누출 사례일의 국내.외 라그랑지안 입자확산 모델링 결과 비교)

  • 김철희;송창근
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.3
    • /
    • pp.249-261
    • /
    • 2003
  • A three-dimensional mesoscale atmospheric dispersion modeling system consisting of the Lagrangian particle dispersion model (LPDM) and the meteorological mesoscale model (MM5) was employed to simulate the transport and dispersion of non-reactive pollutant during the nuclear spill event occurred from Sep. 31 to Oct. 3, 1999 in Tokaimura city, Japan. For the comparative analysis of numerical experiment, two more sets of foreign mesoscale modeling system; NCEP (National Centers for Environmental Prediction) and DWD (Deutscher Wetter Dienst) were also applied to address the applicability of air pollution dispersion predictions. We noticed that the simulated results of horizontal wind direction and wind velocity from three meteorological modeling showed remarkably different spatial variations, mainly due to the different horizontal resolutions. How-ever, the dispersion process by LPDM was well characterized by meteorological wind fields, and the time-dependent dilution factors ($\chi$/Q) were found to be qualitatively simulated in accordance with each mesocale meteorogical wind field, suggesting that LPDM has the potential for the use of the real time control at optimization of the urban air pollution provided detailed meteorological wind fields. This paper mainly pertains to the mesoscale modeling approaches, but the results imply that the resolution of meteorological model and the implementation of the relevant scale of air quality model lead to better prediction capabilities in local or urban scale air pollution modeling.

ESTIMATION OF LONG-TERM POLLUTANT REMOVAL EFFICIENCIES OF WET RETENTION/DETENTION BASINS USING THE WEANES MODEL

  • Youn, Chi-Hyueon;Pandit, Ashok;Cho, Han-Bum
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.215-219
    • /
    • 2005
  • A macro spreadsheet model, WEANES (Wet Pond Annual Efficiency Simulation Model), has been developed to predict the long-term or annual removal efficiencies of wet retention/detention basins. The model uses historical, site-specific, multi-year, rainfall data, usually available from a nearby National Oceanic and Atmospheric Administration (NOAA) climatological station to estimate basin efficiencies which are calculated based on annual mass loads. Other required input parameters are: 1) watershed parameters; drainage area, pervious curve number, directly connected impervious area, and ti me of concentration, 2) pond parameters; control and overflow elevations, pond side slopes, surface areas at control elevation and pond bottom; 3) outlet structure parameters; 4) pollutant event mean concentrations; and 5) pond loss rate which is defined as the net loss due to evaporation, infiltration and water reuse. The model offers default options for parameters such as pollutant event mean concentrations and pond loss rate. The model can serve as a design, planning, and permitting tool for consulting engineers, planners and government regulators.

  • PDF

Symbolic Simulation of Discrete Event Systems (이산 사건 시스템의 기호적 시뮬레이션)

  • 지승도
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1992.10a
    • /
    • pp.7-7
    • /
    • 1992
  • Extending discrete event modelling formalisms to facilitate greater symbol manipulation capabilities is important to further their use in intelligent control and design of high autonomy systems. This paper defines an extension to the DEVS formalism that facilitates symbolic expression of discrete event times by extending the time base from the real numbers to the field of linear polynomials over the reals. A simulation algorithm is developed to generate the branching trajectories resulting from the underlying non-determinism. To efficiently manage linear polynomial constraints based on feasibility checking algorithm borrowed from linear programming. The extended formalism offers a convenient means to conduct multiple, simultaneous explorations of model behaviors. Examples of application are given with consideration on fault model analysis.

  • PDF

State Feedback Control of Asynchronous Sequential Machines with Uncontrollable Inputs: Application to Error Counters (제어 불능 입력이 존재하는 비동기 순차 머신의 상태 피드백 제어 및 오류 카운터로의 응용)

  • Yang, Jung-Min;Kwak, Seong-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.10
    • /
    • pp.967-973
    • /
    • 2009
  • The model matching problem of asynchronous sequential machines is to design a corrective controller such that the stable-state behavior of the closed-loop system matches that of a prescribed model. In this paper, we address model matching when the external input set consists of controllable inputs and uncontrollable ones. Like in the frame of supervisory control of Discrete-Event Systems (DES), uncontrollable inputs cannot be disabled and must be transmitted to the plant without any change. We postulate necessary and sufficient conditions for the existence of a corrective controller that solves model matching despite the influence of uncontrollable events. Whenever a controller exists, the algorithm for its design is outlined. To illustrate the physical meaning of the proposed problem, the closed-loop system of an asynchronous machine with the proposed control scheme is implemented in VHDL code.

Reduced marking in Petri nets analysis

  • Chang, Scokho;Kim, Nak-Kyoung;Nam, Boo-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.690-695
    • /
    • 1994
  • We propose a method to reduce the marking expression about the places when we model a discrete-event system using the Petri net. The net with reduced marking expression has the same dynamic behavior as the original model. The number of the places can be reduced by the number of the resource places of the Petri net, and consequently the net can be significantly simplified, still preserving the dynamic properties of the net.

  • PDF

Cyber Security Risk Evaluation of a Nuclear I&C Using BN and ET

  • Shin, Jinsoo;Son, Hanseong;Heo, Gyunyoung
    • Nuclear Engineering and Technology
    • /
    • v.49 no.3
    • /
    • pp.517-524
    • /
    • 2017
  • Cyber security is an important issue in the field of nuclear engineering because nuclear facilities use digital equipment and digital systems that can lead to serious hazards in the event of an accident. Regulatory agencies worldwide have announced guidelines for cyber security related to nuclear issues, including U.S. NRC Regulatory Guide 5.71. It is important to evaluate cyber security risk in accordance with these regulatory guides. In this study, we propose a cyber security risk evaluation model for nuclear instrumentation and control systems using a Bayesian network and event trees. As it is difficult to perform penetration tests on the systems, the evaluation model can inform research on cyber threats to cyber security systems for nuclear facilities through the use of prior and posterior information and backpropagation calculations. Furthermore, we suggest a methodology for the application of analytical results from the Bayesian network model to an event tree model, which is a probabilistic safety assessment method. The proposed method will provide insight into safety and cyber security risks.

Simulation for Shop Floor Control

  • Cho, Hyunbo
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1996.05a
    • /
    • pp.15-15
    • /
    • 1996
  • A shop floor control system (SFCS) is the central part of a CIM system used to control the activities of several pieces of manufacturing equipment (e.g., NC machines, robots, conveyors, AGVs, AS/RS). The SFCS receives orders and related process plans, and then performs selecting a specific process routing, allocating resources, scheduling the workpieces, downloading the processing instructions (e.g., RS-274 instructions for NC machines, VAL II programs for robot), monitoring the progress of activities, detecting and recovering from errors, and preparing reports on the status of the manufacturing system. Simulation has been utilized in discovering control policies used for resolving shop floor be control problems such as resource contentions, part dispatching, deadlock. The simulation model must be designed to respond to real-time data coming from a shop floor. However, to rapidly build a realtime simulation model of SFCS cannot be easily accomplished. This talk is to address an automatic program generator of discrete event simulation model for shop floor control from process plans and resource models. The program generator is capable of constructing complete discrete simulation models for multi-product and multi-stage flexible manufacturing systems.

  • PDF