• Title/Summary/Keyword: Event Mean Concentration

Search Result 145, Processing Time 0.033 seconds

Estimation of Pollutants Loading from Non-Point Sources Based on Rainfall Event and Land use Characteristics (강우강도와 토지이용을 고려한 비점오염물질 부하량 산정에 관한 연구)

  • Lee, Hye-Won;Choi, Nam-Hee;Lee, Yong-Seok;Choi, Jung-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.8
    • /
    • pp.572-577
    • /
    • 2011
  • The unit load has simply been used to estimate total pollutant loading from non-point sources, however, it does not count on the variable pollutant loading according to land use characteristics and rainfall intensity. Since pollutant emission from the watershed is strongly dependent on the rainfall intensity, it is necessary to find out the relationship between pollutant loading and rainfall intensity. The objective of this study is to develop simple and easy method to compute non-point source pollution loads with consideration of rainfall intensity. Two non-point source removal facility at Gyeongan-dong (Gwangju-si) and Mohyeon-myeon (Yongin-si), Gyeonggi-do was selected to monitor total rainfall, rainfall intensity, runoff characteristics and water quality from June to November, 2010. Most of Event Mean Concentrations (EMC) of measured water quality data were higher in Gyeongan which has urban land use than in Mohyeon which has rural land use. For the case of TP (Total Phosphorus), Mohyeon has higher values by the influence of larger chemical uses such as fertilizer. The relationship between non-point source pollution load and rainfall intensity is perfectly well explained by cubic regression with 0.33~0.81 coefficients of determination($R^2$). It is expected that the pollution loading function based on the long-term monitoring would be very useful with good accuracy in computing non-point source pollution load, where a rainfall intensity is highly variable.

Development of the EMC-based Empirical Model for Estimating Pollutant Loads from Small Agricultural Watersheds (농촌 소유역에서 EMC를 이용한 오염물질 부하량 산정기법의 개발)

  • Kim, Young-Chul;Kim, Geon-Ha;Lee, Dong-Ryul
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.4
    • /
    • pp.691-703
    • /
    • 2003
  • In this paper, a new and integrated approach easily used to calculate the pollutant loads from agricultural watersheds is suggested. Basic concepts of this empirical tool are based on the hypotheses that variations in event mean concentrations(EMCs) of the pollutants from a given agricultural watershed during rainstorms are only due to the rainfall pattern. This assumption would be feasible to agricultural watersheds whose land uses does not change during the cultivation period overlapped by rainy season and also in which point-sources of the pollutants are rare. Therefore, if EMC data sets through extensive sampling from various rural areas are available, it is possible to establish relationships between EMCs, shapes and land uses of the watersheds, and rainfall events. For this purpose, fifty one sets of EMC values were obtained from nine different watersheds, and those data were used to develop predictive tools for the EMCs of 55, COD, TN and TP in rainfall runoff. The results of the statistical tests for those formulas show that they are not only fairly good in predicting actual EMC values of some parameters, but also useful in terms of calculating pollutant loads on any time-spans such as the day of rainfall event or weekly, monthly, and yearly. Their applicability was briefly demonstrated and discussed. Also, the unit loads calculated from EMCs based on different land uses and real rainfall data over one of the watershed used for this study. were provided, and they are compared with other well-known unit loads.

Determination of EMCs for Rainfall Ranges from Transportation Landuses (교통관련 토지이용에서의 강우계급별 EMC 산정)

  • Lee, So-Young;Maniquiz, Marla C.;Choi, Ji-Yeon;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.11 no.2
    • /
    • pp.67-76
    • /
    • 2009
  • The contribution of pollutant loadings from non-point source (NPS) to the four major rivers in Korea exceeded 22~37 % of the total loadings in 2004 and is expected to reach 60 % in 2020. Most of NPS loadings are coming from urban areas, especially from paved areas. Because of high imperviousness rate, many types of NPS pollutant are accumulating on the surface during dry periods. The accumulated pollutants are wash-off during a storm and highly degrading the water quality of receiving water bodies. For this reason, the Korean Ministry of Environment (MOE) developed the Total Maximum Daily Load (TMDL) program to protect the water quality by managing the point source and NPS loadings. NPS has high uncertainties during a storm because of the characteristics of rainfall and watershed areas. The rainfall characteristics can affect on event mean concentrations (EMCs), mass loadings, flow rate, etc. Therefore, this research was performed to determine EMCs for rainfall ranges from transportation landuses such as road and parking lot. Two sites were monitored over 45 storm events during the 2006/06 through 2008/10 storm seasons. Mean TSS EMCs decrease as rainfall ranges increase and highest at less than 10mm rainfall. The results of this study can be used to determine the efficient scale of BMP facility considering specific rainfall range.

  • PDF

A Study on Prediction of Asian Dusts Using the WRF-Chem Model in 2010 in the Korean Peninsula (WRF-Chem 모델을 이용한 2010년 한반도의 황사 예측에 관한 연구)

  • Jung, Ok Jin;Moon, Yun Seob
    • Journal of the Korean earth science society
    • /
    • v.36 no.1
    • /
    • pp.90-108
    • /
    • 2015
  • The WRF-Chem model was applied to simulate the Asian dust event affecting the Korean Peninsula from 11 to 13 November 2010. GOCART dust emission schemes, RADM2 chemical mechanism, and MADE/SORGAM aerosol scheme were adopted within the WRF-Chem model to predict dust aerosol concentrations. The results in the model simulations were identified by comparing with the weather maps, satellite images, monitoring data of $PM_{10}$ concentration, and LIDAR images. The model results showed a good agreement with the long-range transport from the dust source area such as Northeastern China and Mongolia to the Korean Peninsula. Comparison of the time series of $PM_{10}$ concentration measured at Backnungdo showed that the correlation coefficient was 0.736, and the root mean square error was $192.73{\mu}g/m^3$. The spatial distribution of $PM_{10}$ concentration using the WRF-Chem model was similar to that of the $PM_{2.5}$ which were about a half of $PM_{10}$. Also, they were much alike in those of the UM-ADAM model simulated by the Korean Meteorological Administration. Meanwhile, the spatial distributions of $PM_{10}$ concentrations during the Asian dust events had relevance to those of both the wind speed of u component ($ms^{-1}$) and the PBL height (m). We performed a regressive analysis between $PM_{10}$ concentrations and two meteorological variables (u component and PBL) in the strong dust event in autumn (CASE 1, on 11 to 23 March 2010) and the weak dust event in spring (CASE 2, on 19 to 20 March 2011), respectively.

Characteristics of Pollutant Concentration from Livestock Wastewater Effluent Combined with Stormwater Runoff (강우시 및 건기시 축산지역에서 배출되는 오염물질의 유출특성 비교)

  • Tobio, Jevelyn Ann S.;Maniquiz-Redillas, Marla C.;Lee, Yuwha;Kim, Lee-Hyung
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.6
    • /
    • pp.896-901
    • /
    • 2012
  • In this research, the levels of concentrations from the junction of effluent from wastewater treatment plant during dry days and combined with runoff from the surrounding 11 ha livestock catchment area during wet days were determined to investigate the relationships of the concentration of various pollutants such as particulates, nutrients and organics originating from point and nonpoint sources. Manual sampling was conducted from October 2008 to December 2011 during dry and wet days. Based on the results, the flow rates and concentrations of most pollutant parameters were increased during wet days. It was found out that the effluent wastewater combined with stormwater runoff has low BOD to TN/TP ratio and high TN/TP to BOD ratio. Therefore, it is needed to employ other treatment methods to effectively manage the wastewater and reduce the pollutant discharge to receiving water bodies.

Development and Application of Coliform Load Duration Curve for the Geumho River (금호강 유역의 대장균 부하지속곡선 개발 및 적용)

  • Jung, Kang-Young;Im, Tae-Hyo;Kim, Gyeong-Hoon;Lee, In-Jung;Yoon, Jong-Su;Heo, Seong-Nam
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.6
    • /
    • pp.890-895
    • /
    • 2012
  • Duration curves describe the percentage of time that a certain water quality (total/fecal coliform (=TC/FC)) or discharge is exceeded. The curves methodology are usually based on daily records and are useful in estimating how many days per year and event will be exceeded. The technique was further applied to estimated TC/FC loading to the Geumho River, using the daily mean flow rate and TC/FC concentration data during January, 2001 and December, 2011 for the Geumhogang6 (=Seongseo water level station) where an automated monitoring station is located in Gangchang-bridge. Low flow of the Seongseo (=11.1 cms) was equivalent to 75.3% on an exceedance probability scale. Load Duration curve for TC/FC loading at the Seongseo was constructed. Standard load duration curve was constructed with the water quality criteria for class III (TC/FC concentration = 5000/1000 CFU/ 100 mL). By plotting TC/FC observed load duration curve with standard load duration curve, it could be revealed that water quality do not meet the desired water quality for 68.8/11.2% on an exceedance probability scale. IF linear correlation between flow rate and coliform concentration is assumed, it can be interpreted that water quality exceed desired criteria when daily average flow rate is over 11.9/109.9 cms.

Characteristics of Non-point Pollution Discharge on Stormwater Runoff from Lake Doam Watershed (도암호 유역의 강우시 비점오염물질 유출 특성)

  • Kwak, Sung-Jin;Bhattrai, Bal Dev;Kim, Eun-Jung;Lee, Chang-Keun;Lee, Hyeong-Jin;Heo, Woo-Myung
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.1
    • /
    • pp.62-71
    • /
    • 2012
  • Lake Doam watershed was surveyed to evaluate non-point source discharge characteristics and discharge load including several water quality parameters in Song Stream from July 2009 to July 2011. Concentrations of water pollutants were high during the rainfall period, especially, SS, TP and COD showed increasing tendencies toward cumulative water discharge but TN did not show much difference. SS, TP and COD had an initial flush effect of over 50 mm rainfall event but there was no clear tendency for rainfalls below that level. Event mean concentration (EMC) regarding the rainy and dry period showed large differences. Especially rainy season EMC (SS, TP, COD) demonstrated an increasingly high tendency. EMCs of COD, SS, TN and TP measured for twelve rain events were as high as 26.1, 866.0, 4.68 and 0.605 mg $L^{-1}$, respectively. COD, SS, TN and TP loadings from the highland agricultural region of the Song Stream watershed were 34,263, 1,250,254, 2,673 and 933 kg $yr^{-1}\;km^{-2}$, respectively, which were relatively higher than the results of other stream systems. Therefore, it is strongly recommended that long-term monitoring and non-point pollution reduction programs for the highland agricultural area to continue. Furthermore, this non-point source pollution loading research acquired from the highland agricultural area could be the base for reassessment.

The photochemical reactions of iron species in rain and snow in Higashi-Hiroshima, Japan

  • Kim, Do Hoon;Takeda, Kazuhiko;Sakugawa, Hiroshi;Lee, Jin Sik
    • Analytical Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.466-474
    • /
    • 2003
  • This paper describes the concentrations of total dissolved iron (tFe) and $Fe^{2+}$ in rainwater and snow, the relationship of Fe species with other metals and ions in bulk rainwater, and the $Fe^{2+}$ generation mechanism in aqueous samples in rainwater of time series collection. Volume weight mean concentrations of tFe and $Fe^{2+}$ were 3.22 and $1.25{\mu}gL^{-1}$ in bulk rainwater, and 50.1 and $43.5{\mu}gL^{-1}$ in snow, respectively. $Fe^{2+}$ was significant fraction to the tFe, accounted for 3.25-93.4% of the tFe in rainwater and 87% in snow. We also investigated temporal variations of tFe, $Fe^{2+}$, other metals and ions in rainwater of time series collection during rain event. Although the concentration range of tFe was different from those of other species, a decreasing trend of tFe from the beginning of the rain event was similar with other species. However, though $Fe^{2+}$ did not show such a decreasing trend, $Fe^{2+}$/tFe was in good correlation with solar radiation. From the results of multiple linear regression analysis and thermodynamic calculations (Mineql+), $Fe^{2+}$ in our samples may be generated from photochemical reduction of $Fe^{3+}$ species (such as $Fe(OH)^{2+}$,$Fe(OH)^{2+}$ and Fe-oxalate) at daytime.

LIDMOD3 Development for Design and Evaluation of Low Impact Development (저영향개발기법 설계 및 평가를 위한 LIDMOD3 개발)

  • Jeon, Ji-Hong;Seo, Seong-Cheol
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.4
    • /
    • pp.382-390
    • /
    • 2018
  • In this study, the LIDMOD3 was developed to design and evaluate low impact development (LIDMOD). In the same fashion, the LIDMOD3 employs a curve number (NRCS-CN) method to estimate the surface runoff, infiltration and event mean concentration as applicable to pollutant loads which are based on a daily time step. In these terms, the LIDMOD3 can consider a hydrologic soil group for each land use type LID-BMP, and the applied removal efficiency of the surface runoff and pollutant loads by virtue of the stored capacity, which was calculated by analyzing the recorded water balance. As a result of Model development, the LIDMOD3 is based on an Excel spread sheet and consists of 8 sheets of information data, including: General information, Annual precipitation, Land use, Drainage area, LID-BMPs, Cals-cap, Parameters, and the Results. In addition, the LIDMOD3 can estimate the annual hydrology and annual pollutant loads including surface runoff and infiltration, the LID efficiency of the estimated surface runoff for a design rainfall event, and an analysis of the peak flow and time to peak using a unit hydrolograph for pre-development, post-development without LID, and as calculated with LID. As a result of the model application as applied to an apartment, the LIDMOD3 can estimate LID-BMPs considering a well spatical distributed hydroloic soil group as realized on land use and with the LID-BMPs. Essentially, the LIDMOD3 is a screen level and simple model which is easy to use because it is an Excel based model, as are most parameters in the database. This system can be expected to be widely used at the LID site to collect data within various programmable model parameters for the processing of a detail LID model simulation.

Runoff Characteristics of Non-point Source Pollutants in Cherry Tree cultivation zone (벚나무재배지의 비점오염물질 유출특성)

  • Park, Woon Ji;Lee, Hae Seung;Hwang, Soon Hong;Lee, Young Joon;Choi, Joong Dae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.401-401
    • /
    • 2015
  • 본 연구에서는 기타재배지(벚나무재배지)에서 발생하는 비점오염물질 유출 및 수질특성을 살펴보고자 2014년 5월부터 9월까지의 총 12회의 강우사상에 대해 유출특성을 분석하고 오염물질별 유량가중평균농도(Event Mean Concentration, EMC) 및 오염부하를 산정하였다. 모니터링 기간동안 2.6~95.8 mm의 강우가 발생하였으며, 조사된 총 12회의 event 중 단 2회 유출이 발생하였다. 강우강도는 0.33~5.28 mm/hr의 범위로 나타났으며, 선행무강우일수는 0.6~21.2일, 총 유출량은 $0.92{\sim}20.75m^3$, 유출율은 0.03~0.18의 범위로 나타났다. 강우모니터링 결과, EMC는 TOC 3.4~10.3 mg/L(평균 6.9 mg/L), BOD 6.3~6.9 mg/L(평균 6.6 mg/L), COD 22.0~28.8 mg/L(평균 25.4 mg/L), SS 101.8~962.8 mg/L(평균 532.3 mg/L), T-N 4.295~11.864 mg/L(평균 8.080 mg/L) 그리고 T-P 1.109~1.582 mg/L(평균 1.346 mg/L)의 범위로 나타났으며, 각 강우사상에 대한 단위면적당 오염부하는 TOC 0.08~0.58 kg/ha, BOD5 0.05~1.07kg/ha, CODMn 0.22~3.76 kg/ha, SS 0.77~164.4 kg/ha, T-N 0.090~0.734 kg/ha, T-P 0.008~0.270 kg/ha의 범위로 산정되었다. 벚나무재배지의 수질 항목간 Pearson 상관계수를 분석한 결과, 항목 중 $COD_{Mn}$가 다른 수질항목과 유의성을 갖고 높은 상관관계가 나타나 초기유출효과 분석을 위한 대표 수질항목으로 선정하였다. 벚나무재배지의 경우 초기유출 발생에 의한 오염부하의 급격한 증가는 나타나지 않았으며, 누적오염부하량비의 그래프에서는 대부분의 강우사상에서 기울기가 직선에 가깝게 나타났다. 기타재배지의 경우 대부분 투수지역으로 초기세척효과가 비교적 작은 것으로 나타났으며, 지속적으로 오염물질을 배출하는 특성을 보이는 것으로 분석되었다.

  • PDF