• Title/Summary/Keyword: Evasive Maneuver

Search Result 10, Processing Time 0.029 seconds

3-D Optimal Evasion of Air-to-Surface Missiles against Proportionally Navigated Defense Missiles

  • Cho, Sung-Bong;Ryoo, Chang-Kyung;Tahk, Min-Jea
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.514-518
    • /
    • 2003
  • In this paper, we investigate three dimensional optimal evasive maneuver patterns for air-to-surface attack missiles against proportionally navigated anti-air defense missiles. Interception error of the defense missile can be generated by evasive maneuver of the attack missile during the time of flight for which the defense missile intercepts the attack missile. Time varying weighted sum of the inverse of these interception errors forms a performance index to be minimized. Direct parameter optimization technique using CFSQP is adopted to get the attack missile's optimal evasive maneuver patterns according to parameter changes of both the attack missile and the defense missile such as maneuver limit and time constant of autopilot approximated by the 1st order lag system. The overall shape of resultant optimal evasive maneuver to enhance the survivability of air-to-surface missiles against proportionally navigated anti-air missiles is a kind of deformed barrel roll.

  • PDF

Performance Comparison of 3-D Optimal Evasion against PN Guided Defense Missiles Using SQP and CEALM Optimization Methods (SQP와 CEALM 최적화 기법에 의한 대공 방어 유도탄에 대한 3차원 최적 회피 성능 비교)

  • Cho, Sung-Bong;Ryoo, Chang-Kyung;Tahk, Min-Jea
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.272-281
    • /
    • 2009
  • In this paper, three-dimensional optimal evasive maneuver patterns for air-to-surface attack missiles against proportionally navigated anti-air defense missiles were investigated. An interception error of the defense missile is produced by an evasive maneuver of the attack missile. It is assumed that the defense missiles are continuously launched during the flight of attack missile. The performance index to be minimized is then defined as the negative square integral of the interception errors. The direct parameter optimization technique based on SQP and a co-evolution method based on the augmented Lagrangian formulation are adopted to get the attack missile's optimal evasive maneuver patterns. The overall shape of the resultant optimal evasive maneuver is represented as a deformed barrel-roll.

Optimal Evasive Maneuver for Sea Skimming Missiles against Close-In Weapon System (근접방어무기체계에 대한 함대함 유도탄의 최적회피기동)

  • Whang, Ick-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2096-2098
    • /
    • 2002
  • In this paper, the optimal evasive maneuver strategies for typical subsonic ASM(anti-ship missile) to reach its target ship with high survivability against CIWS(close in weapon system) are studied. The optimal evasive maneuver input is defined by the homing command optimizing the cost function which takes aiming errors of CIWS into account. The optimization problem for the effective evasive maneuver is formulated based on a simple missile dynamics model and a CIWS model. By means of solving the problem, a multiple hypotheses testing method is proposed. Since this method requires generation of too many hypotheses, the hypothesis-pruning technique is adopted. The solution shows that the optimal evasive maneuver is a bang-bane shaped command whose frequency is varied by the aimpoint determination strategy in CIWS.

  • PDF

Impact Angle Control Guidance Synthesis for Evasive Maneuver against Intercept Missile

  • Yogaswara, Y.H.;Hong, Seong-Min;Tahk, Min-Jea;Shin, Hyo-Sang
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.719-728
    • /
    • 2017
  • This paper proposes a synthesis of new guidance law to generate an evasive maneuver against enemy's missile interception while considering its impact angle, acceleration, and field-of-view constraints. The first component of the synthesis is a new function of repulsive Artificial Potential Field to generate the evasive maneuver as a real-time dynamic obstacle avoidance. The terminal impact angle and terminal acceleration constraints compliance are based on Time-to-Go Polynomial Guidance as the second component. The last component is the Logarithmic Barrier Function to satisfy the field-of-view limitation constraint by compensating the excessive total acceleration command. These three components are synthesized into a new guidance law, which involves three design parameter gains. Parameter study and numerical simulations are delivered to demonstrate the performance of the proposed repulsive function and guidance law. Finally, the guidance law simulations effectively achieve the zero terminal miss distance, while satisfying an evasive maneuver against intercept missile, considering impact angle, acceleration, and field-of-view limitation constraints simultaneously.

Bio-inspired Evasive Movement of UAVs based on Dragonfly Algorithm in Military Environment

  • Gudi, Siva Leela Krishna Chand;Kim, Bo-sun;Silvirianti, Silvirianti;Shin, Soo Young;Chae, Seog
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.1
    • /
    • pp.84-90
    • /
    • 2019
  • Applications of unmanned aerial vehicles (UAVs) in the military environment have become popular because they require minimum human contribution and can avoid accidents during missions. UAVs are employed in various missions such as reconnaissance, observation, aggression, and protection. Consequently, counter-measures, known as anti-drone technologies, have been developed as well. In order to protect against threats from anti-drone technologies and enhance the survivability of UAVs, this study proposes an evasive measure. The proposed bio-inspired evasive maneuver of a UAV mimics a dragonfly's irregular flight. The unpredictable UAV movement is able to confuse enemies and avoid threats, thereby enhancing the UAV's survivability. The proposed system has been implemented on a commercial UAV platform (AR Drone 2.0) and tested in a real environment. The experiment results demonstrate that the proposed flight pattern has larger displacement values compared to a regular flight maneuver, thus making the UAV's position is difficult to predict.

Effect of Evasive Maneuver Against Air to Air Infrared Missile on Survivability of Aircraft (공대공 적외선 위협에 대한 회피기동이 항공기 생존성에 미치는 영향)

  • Bae, Ji-Yeul;Bae, Hyung Mo;Kim, Jihyuk;Jung, Dae Yoon;Cho, Hyung Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.6
    • /
    • pp.501-506
    • /
    • 2017
  • An infrared seeking missile does not emit any signal by itself as it is guided by passive heat signature from an aircraft. Therefore, it is difficult for the target aircraft to notice the existence of incoming missile, making it a serious threat. The usage of MAW(missile approach warning) that can notify the approaching infrared seeking missile is currently limited due to its high cost. Furthermore, effectiveness of MAW against infrared seeking missile is not available in open literature. Therefore, effect of evasive maneuver by MAW on the survivability of the aircraft is simulated to evaluate the benefit of the MAW in this research. The lethal range is used as a measure of aircraft survivability. An aircraft flying at an altitude of 5km with Mach 0.9 being tracked by air-launched AIM-9 infrared seeking missile is considered in this research. As a variable for the evasive maneuver, the MAW recognition distance of 5~7km and the G-force of 3~7G that limits maximum directional change of the aircraft are considered. Simulation results showed that the recognition of incoming missile by MAW and following evasive maneuver can reduce the lethal range considerably. Maximum reduction in lethal range is found to be 29.4%. Also, the MAW recognition distance have a greater importance than the aircraft maneuverability that is limited by structural limit of the aircraft.

Engagement-Scenario-Based Decoy-Effect Simulation Against an Anti-ship Missile Considering Radar Cross Section and Evasive Maneuvers of Naval Ships

  • Kim, Kookhyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.3
    • /
    • pp.238-246
    • /
    • 2021
  • The survivability of a naval ship is the ability of the ship and its onboard systems to remain functional and continue a designated mission in man-made hostile environments. A passive decoy system is primarily used as a weapon system for improving the survivability of a naval ship. In this study, an engagement scenario-based simulation program was developed for decoy effectiveness assessments against an anti-ship missile (ASM), which tracks a target with sea-skimming and active radar homing. The program can explain the characteristics of a target ship, such as the radar cross section and evasive maneuvers, as well as the operational performance of the onboard decoy system, the guidance method of the ASM, and the engagement environment's wind speed and direction. This paper describes the theory and formulations, configuration, and user interface of the developed program. Numerical examples of a decoy effect assessment of a virtual naval ship against an ASM are presented.

Robust Obstacle Detection and Avoidance Algorithm for Infrastructure-Based Vehicle Communication Under Signal Interference (중계기를 통한 다중 차량 간 통신 상황에서 신호 간섭에 강한 장애물 감지 및 회피 알고리즘)

  • Choi, Byung Chan;Kwon, Hyuk Chan;Son, Jin Hee;Nam, Haewoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.5
    • /
    • pp.574-580
    • /
    • 2016
  • In this paper, we will introduce the system that can control multiple vehicles on the road through Single Board Computers and V2I (Vehicle-To-Infrastructure). Also, we will propose the group evasive maneuver decision algorithm, which plays a critical role in deciding whether the vehicles in the system have to conduct evasive maneuvers to avoid obstacles on the road. In order to test this system, we have utilized Wi-Fi and TCP/IP for establishing the communication between multiple vehicles and the relay server, and observed their driving states on the road with obstacles. During the experiments, we have discovered that our original decision algorithm possesses high failure rate when there is frequency interference in ISM (Industrial Scientific Medical) band. In order to reduce this failure rate, we have implemented the data transition detector. This paper will focus on how the use of data transition detector can affect the reliability of the system under the frequency interference of ISM band. If this technology is improved and applied in the field, we will effectively deal with such dangerous situations as multiple collision accidents through vehicle-to-vehicle communication or vehicle-to-infrastructure communication. Furthermore, this can be applied to the autonomous driving technologies. This can be used as the reference data for the development of the similar system.

Considerations in Practical Advanced Guidance Law Development (실용적 첨단유도법칙 개발을 위한 고려사항)

  • 조항주
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.96-106
    • /
    • 2002
  • Many modern guided weapon systems employ sophisticated target sensors as well as powerful computing systems. Due to such advanced features, they are required to achieve better guidance accuracy, and at the same time other guidance objectives for better weapon effectiveness and survivability. In this paper, we overview some of the technical considerations in such advanced guidance algorithm development, and briefly look at some related research works. More specifically, we discuss impact angle control, time-varying nature of the guidance system, time-to-go estimation, guidance loop stability, effect of autopilot lag and physical limitations in control variables, parasitic paths in guidance loops, etc. We also briefly look at some advanced concepts such as integrated guidance and control loop design, target adaptive guidance, guidance law development based on dual control concept, and terminal evasive maneuver.

Development and Evaluation of Traffic Conflict Criteria at an intersection (교차로 교통상충기준 개발 및 평가에 관한 연구)

  • 하태준;박형규;박제진;박찬모
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.2
    • /
    • pp.105-115
    • /
    • 2002
  • For many rears, traffic accident statistics are the most direct measure of safety for a signalized intersection. However it takes more than 2 or 3 yearn to collect certain accident data for adequate sample sizes. And the accident data itself is unreliable because of the difference between accident data recorded and accident that is actually occurred. Therefore, it is rather difficult to evaluate safety for a intersection by using accident data. For these reasons, traffic conflict technique(TCT) was developed as a buick and accurate counter-measure of safety for a intersection. However, the collected conflict data is not always reliable because there is absence of clear criteria for conflict. This study developed objective and accurate conflict criteria, which is shown below based on traffic engineering theory. Frist, the rear-end conflict is regarded, when the following vehicle takes evasive maneuver against the first vehicle within a certain distance, according to car-following theory. Second, lane-change conflict is regarded when the following vehicle takes evasive maneuver against first vehicle which is changing its lane within the minimum stopping distance of the following vehicle. Third, cross and opposing-left turn conflicts are regarded when the vehicle which receives green sign takes evasive maneuver against the vehicle which lost its right-of-way crossing a intersection. As a result of correlation analysis between conflict and accident, it is verified that the suggested conflict criteria in this study ave applicable. And it is proven that estimating safety evaluation for a intersection with conflict data is possible, according to the regression analysis preformed between accident and conflict, EPDO accident and conflict. Adopting the conflict criteria suggested in this study would be both quick and accurate method for diagnosing safety and operational deficiencies and for evaluation improvements at intersections. Further research is required to refine the suggested conflict criteria to extend its application. In addition, it is necessary to develope other types of conflict criteria, not included in this study, in later study.