• Title/Summary/Keyword: Evaporation and condensation

Search Result 150, Processing Time 0.023 seconds

Heat transfer with geometric shape of micro-fin tubes (II) -Evaporating heat transfer- (마이크로핀 관의 기하학적 형상면화에 대한 열전달 특성(II) -증발 열전달-)

  • Kwak, Kyung-Min;Jang, Jae-Sik;Bae, Chul-Ho;Jung, Mo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.6
    • /
    • pp.789-798
    • /
    • 1999
  • The evaporating heat transfer experiments with refrigerant HCFC 22 are performed for performance evaluation using 4 and 6 kinds of microfin tubes with outer diameter of 9.52mm and 7.0mm, respectively. Used microfin tubes have different shape and number of fins with each other, The experimental results are represented with effects of quality, mass flux and EPR. The evaporating heat transfer characteristics are represented by the existence of not only heat transfer area and turbulence promotion effect but also additional other enhancement mechanism, which are the overflow of the refrigerant over the microfin and microfin arrangement. Microfin tubes having a shape which can give much overflow over the microfin show large evaporating heat transfer coefficients. The effect of refrigerant overflow is much severe in evaporation than condensation. The effect of microfin arrangement is related to overflow effect of the refrigerant over the microfin.

  • PDF

Design and Performance Evaluation of a Faraday Cage and an Aerosol Charger (패러데이 케이지와 에어로졸 하전기의 설계 및 성능평가)

  • Ji, Jun-Ho;Bae, Kwi-Nam;Hwang, Jung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.3
    • /
    • pp.315-323
    • /
    • 2004
  • An electrical cascade impactor is a multi-stage impaction device to separate airborne particles into aerodynamic size classes using particle charging and electrical detection techniques. A Faraday cage and an aerosol charger, which are basic components of the electrical cascade impactor, were designed and evaluated in this study. The low-level current response of the Faraday cage was investigated with changing particle size and air flow rate by using sodium chloride (NaCl) particles. The response of the prototype Faraday cage was very similar to that of a commercial aerosol electrometer (TSI model 3068) within ${\pm}$5% for singly-charged particles. The response linearity of the prototype Faraday cage could be extended up to flow rate of 30 L/min. For the performance evaluation of the aerosol charger the monodisperse liquid dioctyl sebacate (DOS) particles, with diameters of 0.1∼0.8$\mu\textrm{m}$, were generated using spraying from an atomizer followed by evaporation-condensation process. Typical performance parameters of the aerosol charger such as P$.$n, wall loss, and elementary charges per particle were evaluated. The performance of the prototype aerosol charger was found to be close to that of the aerosol charger used in an electrical low pressure impactor (ELPI, Dekati).

Simulation of the Economizer Performance of a Screw Compressor Using R22 and R407C (R22와 R407C를 적용한 스크류 압축기의 이코노마이저 성능 시뮬레이션)

  • Kim, Yeong-Il;Park, Sang-Hyeon;Jang, Yeong-Su;Kim, Yong-Chan;Nam, Im-U
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.3
    • /
    • pp.465-473
    • /
    • 2002
  • Screw compressor type chiller is widely used in refrigeration for capacity over 30 RT. To enhance the chiller performance, an economizer which increases the cooling capacity and COP can be adopted. In this study the performance of an economizer is studied by using a simulation program. Simulation results are compared with experiment data to verify the validation of a simulation program. Maximum economizer injection pressure is estimated and the performance of an economizer for various evaporation and condensation temperatures is calculated. From the results, the performance enhancement of an economizer by using R22 and R407C is compared.

Specific Surface Area and Pore Structure Changes of Calcined Lime with Calcination and Sulfation Reaction (소성과 황화반응에 따른 생석회의 비표면적 및 기공구조 변화)

  • 강순국;정명규
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.3
    • /
    • pp.19-29
    • /
    • 1998
  • The calcination reactivity of limestone and physical property changes of calcined lime were investigated with a temperature($720~1000^{\circ}C$ under atmospheric gas($N_2$, $CO_2$) conditions. The mechanisms of mass transport in a lime matrix were represented by the evaporation and condensation (${\gamma}=1.7$) at $1000^{\circ}C$ and the volume diffusion (${\gamma}=2.7$) at $800^{\circ}C$, which was obtained by the specific surface area of calcined lime with sintering conditions. Also, the effect of physical property on the reactivity of sulfation reaction was determined by the changes of pore size with $lime-SO_2$ reaction in this work. The initial sulfation rate of calcined lime increased with increasing temperature, whereas the capture capacity of $SO_2$ exhibited a maximum value at $900^{\circ}C$. The pore volume of sulfated lime was decreased with increasing sulfation time, but the major pores shifted to the distribution of larger size at a temperature of $850{\;}~{\;}1000^{\circ}C$. The mean pore size of sulfated lime based on pore volume decreased gradually at $1000^{\circ}C$; however, it increased with sulfation time up to 40 min and rapidly decreased thereafter.

  • PDF

A Comparison of the Heat Transfer Performance of Thermosyphon Using a Straight Groove and a Helical Groove

  • Han Kyuil;Cho Dong-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.12
    • /
    • pp.2296-2302
    • /
    • 2005
  • This study is focused on the comparison of heat transfer performance of two thermosyphons having 60 straight and helical internal grooves. Distilled water has been used as working fluid. Liquid fill charge ratio defined by the ratio of working fluid volume to total internal volume of thermosyphon, the inclination angle and operating temperature were used as experimental parameters. The heat flux and heat transfer coefficient are estimated from experimental results. The conclusions of this study may be summarized as follows; Liquid fill charge ratio, inclination angle and geometric shape of grooves were very important factors for the operation of thermosyphon. The optimum liquid fill charge ratio for the best heat flux were $30\%$. The heat transfer performance of helically grooved tube was higher than that of straight grooved tube in low inclination angle (less than $30^{\circ}$), but the results were opposite in high inclination angle (more than $30^{\circ}$). As far as optimum inclination angle concerns, range of $25^{\circ}\~30^{\circ}$ for a helically grooved tube and about $40^{\circ}$ for a straight grooved tube are suggested angles for the best results.

Parametric study of population balance model on the DEBORA flow boiling experiment

  • Aljosa Gajsek;Matej Tekavcic;Bostjan Koncar
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.624-635
    • /
    • 2024
  • In two-fluid simulations of flow boiling, the modeling of the mean bubble diameter is a key parameter in the closure relations governing the intefacial transfer of mass, momentum, and energy. Monodispersed approach proved to be insufficient to describe the significant variation in bubble size during flow boiling in a heated pipe. A population balance model (PBM) has been employed to address these shortcomings. During nucleate boiling, vapor bubbles of a certain size are formed on the heated wall, detach and migrate into the bulk flow. These bubbles then grow, shrink or disintegrate by evaporation, condensation, breakage and aggregation. In this study, a parametric analysis of the PBM aggregation and breakage models has been performed to investigate their effect on the radial distribution of the mean bubble diameter and vapor volume fraction. The simulation results are compared with the DEBORA experiments (Garnier et al., 2001). In addition, the influence of PBM parameters on the local distribution of individual bubble size groups was also studied. The results have shown that the modeling of aggregation process has the largest influence on the results and is mainly dictated by the collisions due to flow turbulence.

Design and Performance Evaluation of a Low Pressure Impactor for Sampling Submicron Aerosols (서브마이크론 입자 측정용 저압 임팩터의 설계 및 성능평가)

  • Ji, Jun-Ho;Cho, Myung-Hoon;Bae, Gwi-Nam;Hwang, Jung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.3
    • /
    • pp.349-358
    • /
    • 2004
  • A low pressure impactor is an impaction device to separate airborne particles into aerodynamic size classes at low pressure condition. We designed a two-stage low-pressure impactor to classify submicron sized environmental aerosols. Performance evaluation was carried out for stages 1 and 2 by using an electrical method. Monodisperse liquid dioctyl sebacate (DOS) particles were generated using evaporation-condensation process followed by electrostatic classification using a DMA (differential mobility analyzer). The test particles were in the range of 0.08∼0.8$\mu\textrm{m}$. For the evaluation of the impactor we used two electrometers; one was connected to the impaction plate of the impactor and the other was to the Faraday cage used as a backup filter. The effect of polydispersity of test aerosols on the performance was investigated. The results showed that the experimental 50-% cutoff diameters at each impactor's operation pressure were 0.53 and 0.187$\mu\textrm{m}$ for stages 1 and stage 2, respectively. The effects of operation pressure on the cutoff diameter and the steepness of collection efficiency curves were also investigated.

Design and Performance Evaluation of Electrical Impactor for Nano Environmental Aerosols (나노 환경입자 측정용 전기적 임팩터의 설계 및 성능평가)

  • Ji, Jun-Ho;Cho, Myung-Hoon;Bae, Gwi-Nam;Hwang, Jung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1417-1422
    • /
    • 2003
  • An electrical cascade impactor is a multistage impaction device to separate airborne particles into aerodynamic size classes using electrical method. We designed a real-time three-stage electrical low-pressure impactor, which is proper to nanometer sized environmental aerosols. Performance evaluation was carried out for stage 1 and 2. The monodisperse liquid dioctyl sebacate (DOS) particles were generated using condensation-evaporation followed by electrostatic classification using DMA (differential mobility analizer) for particles with diameters in the range of $0.04{\sim}0.8{\mu}m$. The evaluation of the electrical impactor is based on the use of two electrometers, one connected to the impaction plate of the impactor, and the other to the faraday cage as backup filter. The results showed that the experimental 50% cutoff diameters in the operation pressure were 0.53 and $0.12{\mu}m$ for stage 1 and stage 2. The effect of operation pressure on the cutoff diameter and the steepness of collection effcieicy curves is investigated.

  • PDF

NUMERICAL ANALYSIS OF MULTIPHASE FLOW BY NUFLEX (NUFLEX를 이용한 다상유동의 수치해석)

  • Yu, Tae-Jin;Suh, Young-Ho;Son, Gi-Hun;Hur, Nahm-Keon
    • Journal of computational fluids engineering
    • /
    • v.12 no.2
    • /
    • pp.21-25
    • /
    • 2007
  • A general purpose program NUFLEX has been extended for two-phase flows with topologically complex interface and cavitation flows with liquid-vapor phase change caused by large pressure drop. In analysis of two-phase flow, the phase interfaces are tracked by employing a LS(Level Set) method. Compared with the VOF(Volume-of-Fluid) method based on a non-smooth volume-fraction function, the LS method can calculate an interfacial curvature more accurately by using a smooth distance function. Also, it is quite straightforward to implement for 3-D irregular meshes compared with the VOF method requiring much more complicated geometric calculations. Also, the cavitation process is computed by including the effects of evaporation and condensation for bubble formation and collapse as well as turbulence in flows. The volume-faction and continuity equations are adapted for cavitation models with phase change. The LS and cavitation formulation are implemented into a general purpose program for 3-D flows and verified through several test problems.

OBSERV ATION OF MICRO-STRUCTURE AND OPTICAL PROPERTISE OF TITANIUM DIOXIDE THIN FILMS USING OPTICAL MMEHODS

  • Kim, S.Y.;Kim, H.J.
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.6
    • /
    • pp.788-796
    • /
    • 1996
  • $TiO_2$ films prepared by RF magnetron sputtering, electron beam evaporation, ion assisted deposition (IAD) and sol-gel method are prepared on c-Si substrate and vitreous silica substrate respectively. From the transmission spectra of $TiO_2$ films on vitreous silica substrate in the spectral region from 190 nm to 900 nm, k($\lambda$) of $TiO_2$ is obtained. Using k($\lambda$) in the interband transition region the coefficients of the quantum mechanical dispersion relation of an amorphous $TiO_2$ and hence n($\lambda$) including the optically opaque region of above fundamental transition energy are obtained. The spectroscopic ellipsometry spectra of $TiO_2$ films in the spectral region of 1.5-5.0eV are model analyzed to get the film packing density variation versus i) substrate material, ii) film thickness and iii) film growth technique. The complex refractive index change of these $TiO_2$ films versus water condensation is also studied. Film micro-structures by SE modelling results are compared with those by atomic force microscopy images and X-ray diffraction data.

  • PDF