• Title/Summary/Keyword: Evaporation Cooling System

Search Result 83, Processing Time 0.028 seconds

An Experimental Study of Evaporative Heat Exchangers with Mini-channels (물의 증발잠열을 이용하는 미니채널 열교환기의 실험적 연구)

  • Lee, Hyung-Ju;Yoo, Young-June;Min, Seong-Ki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.245-253
    • /
    • 2010
  • The present study shows some results of developing evaporative heat exchangers with mini-channels. Heat exchangers with three different water paths were manufactured and tested to compare performances of cooling and pressure drop. Among the three types of heat exchangers, Type 2 with full-etching was proved to be the best in the cooling performances for considered operating conditions, and thus it is recommended to adopt Type 2 for its simplicity of production and outstanding performance. However, Type 1 was shown to be better when it is operated at a high air inlet temperature condition. The developed evaporative heat exchanger will be installed in Environmental Control Systems(ECSs) for aerial vehicles, and it can be used effectively in case an ECS is not only limited in its weight and volume but also required to absorb heats without supplying water (or a coolant) for a certain period of time.

  • PDF

A Experimental Study on Effluence Characteristic of the Rainfall in the IRMA Green Roof System of KICT (역지붕 녹화옥상시스템[KICT-GRS2004]의 우수유출 특성에 관한 실험적 연구)

  • Jang, Dae-hee;Kim, Hyeon-soo;Lee, Keon-ho;Moon, Soo-young
    • KIEAE Journal
    • /
    • v.5 no.2
    • /
    • pp.11-18
    • /
    • 2005
  • The Purpose of this study is development and analysis of Effluence Characteristic of the Rainfall in the IRMA Green Roof System(developed in KICT) Plus 50 program is an internal research project at KICT(Korean Institute of Construction Technology) which has it as an object ; to lengthen the building's life 50-year or more and reduce energy conception 50% than present. Green roof system is one of the most important theme in the Plus 50 program. Generally, a Green Roof System has a positive effect on the thermal conductivity in winter, the micro cooling effect on building and city by evaporation in summer, the flood-control effect by runoff-reduction or the treated rainwater-quality of green roof system and so on. However, inspection of the physical effect of green roof system does not consider in Korea. Above all, long-term monitoring and a whole observation of green roof system is needed to probate the effect. So a new experimental method could be tried in this research, which is never attempted in Korea. The measurement by a bucket with a great volume, 1L, gives a new dimension of measuring green roof effect to measure the permanent running flood from a wide roof. This offers a reasonable result on a long-term measuring of a running water. Additionally, the thermal behavior of the IRMA(Insulated Roof Membrane Assembly), known in the western europe as a reasonable solution at green roof system by economical benefits and easy construction, would be experimented.

An Experimental Study on the Heat Transfer Characteristics of Two-phase closed Thermosyphon (밀폐형 2상 열사이폰의 열전달 특성에 관한 실험적 연구)

  • Cho, Ki-Hyun;Paek, Yee;Chung, Hyung-Kil
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.3
    • /
    • pp.165-171
    • /
    • 2002
  • The thermosyphon has been used as a heat transmission device in the heat recovery of low level energy and cooling for heat generating equipments. Many studies on the working fluids and wicks have been reported to improve the heat transfer efficiency of the thermosyphon. A low temperature heat pipe with acetone is chosen in the present study to compare the heat transfer characteristics due to pouring amount of working fluid, magnitude of power supplied and tilt angles. The thermosyphon made ⵁ$15.88{\times}0.8t{\times}600mm$ of copper, evaporation section 200mm, insulation section 25mm, condensation 375mm. Heat transfer rate of the thermosyphon increase as magnitude of power supplied increase and observe dry out phenomenon at 5~10% of pouring amount of working fluid. So thermosyphon at the 150kJ/s judged to need 12% or more. Heat transfer rate of the thermosyphon have nothing to do with tilt angles. Dry out phenomenon of the thermo syphon makes it possible that a low temperature thermosyphon may be used to control temperature and heat transfer of a system when the critical quantity of a working fluid is supplied in the thermosyphon.

  • PDF

Extract changes of Caulis Lonicerae Japonicae according to with or without Iron (인동(忍冬)의 기철(忌鐵) 및 반철(伴鐵) 추출시(抽出時) 추출물(抽出物)의 변화(變化))

  • Jeong, Deok Ja;Jung, Dae Hwa;Jang, Mi Hee;Park, Chung A;Kim, Sang Chan
    • Herbal Formula Science
    • /
    • v.28 no.3
    • /
    • pp.281-287
    • /
    • 2020
  • Objectives : In case of herbs decoction, the ceramic or earthware pots was recommended, but not the metals, particularly iron or aluminum, which could cause unknown chemical reactions. In Korean Medical classics, it has been known that some herbs including Caulis Lonicerae Japonicae (CL) were not recommended to boil with iron pot. This study investigates the physical changes of extracts of CL with or without iron. Methods : CL was decocted with reflux cooling extraction system to prevent evaporation and volatilization. Content of polyphenol was detected by Folin-Denis method and the levels of loganin and chlorogenic acid were evaluated by UPLC. Results : The color of extract with glass beads (GB) is yellowish brown, and the iron beads (IB) is blackish brown. Polyphenol and chlorogenic acid levels were reduced in IB extracts. Conclusions : The color of extract was change to blackish brown, and polyphenol and chlorogenic acid levels were reduced in CL extract with iron. Therefore, iron pots is not suitable for CL extraction.

Green-infra Strategies for Mitigating Urban Heat Island (도시열섬현상완화를 위한 그린인프라 전략)

  • Park, Chae-Yeon;Lee, Dong-Kun;Kwon, Eu-gene;Her, Min-ju
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.20 no.5
    • /
    • pp.67-81
    • /
    • 2017
  • Because of lack of accurate understanding of the mechanism of urban heat island (UHI) phenomenon and lack of scientific discussion, it is hard to come up with effective measures to mitigate UHI phenomenon. This study systematically described the UHI and suggested the solutions using green-infrastructure (green-infra). The factors that control UHI are very diverse: radiant heat flux, latent heat flux, storage heat flux, and artificial heat flux, and the air temperature is formed by the combination effect of radiation, conduction and convection. Green-infra strategies can improve thermal environment by reducing radiant heat flux (the albedo effect, the shade effect), increasing latent heat flux (the evapotranspiration effect), and creating a wind path (cooling air flow). As a result of measurement, green-infra could reduce radiant heat flux as $270W/m^2$ due to shadow effect and produce $170W/m^2$ latent heat flux due to evaporation. Finally, green-infra can be applied differently on the macro(urban) scale and micro scale, therefore, we should plan and design green-infra after the target objects of structures are set.

Humidification model and heat/water balancing method of PEMFC system for automotive applications (자동차용 연료전지 시스템의 가습모델과 열/물균형 유지방법)

  • Jung, Seung-Hun;Yoon, Seok-Ho;Kim, Min-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.339-344
    • /
    • 2005
  • A PEMFC system model for FCEV was constructed and simulated numerically to examine the heat/water flow of the system and air/fuel humidification process for various operation conditions (ambient pressure /temperature/humidity, operating temperature, power load). We modeled PEMFC stack which can generate maximum electricity of about 80 kW. This stack consists of 400 unit cells and each unit cell has $250cm^2$ reacting area. Uniform current density and uniform operating voltage per each cell was assumed. The results show the flow characteristics of heat and water at each component of PEMFC system in macro-scale. The capacity shortage of the radiator occurred when the ambient was hot $(over\;40^{\circ}C)$ and power level was high (over 50 kW). In spite of some heat release by evaporation of water in stack, heat unbalance reached to 20kW approximately in such a severe operating condition. This heat unbalance could be recovered by auxiliary radiators or high speed cooling fan with additional cost. In cold environment, the capacity of radiator exceeded the net heat generation to be released, which may cause a problem to drop the operating temperature of stack. We dealt with this problem by regulating mass flow rate of coolant and radiator fan speed. Finally, water balance was not easily broken when we retrieved condensed and/or unused water.

  • PDF

Analysis of Fire Suppression Efficiency for Intermittent Water Spray Pattern by Fire Dynamics Simulator (FDS를 이용한 교번식 미분무방식의 소화 성능 분석)

  • Jee, Moon-Hak;Lee, Byung-Kon
    • Fire Science and Engineering
    • /
    • v.22 no.3
    • /
    • pp.216-220
    • /
    • 2008
  • Water mist fire suppression system utilizes the fire suppression features such as cooling of fire source, dilution of ambient oxygen, and shielding of radiation heat with the evaporation of microscopic water droplets. The momentum of water mist is relatively lower than that of larger water droplet and the infiltration of water mist to the fire source is not effective. Contribution of evaporated water vapor is liable to decline to limited portion of fire source due to its light weight and sparse density. On the other hand, the cycling water mist pattern is expected to improve the penetration force of water mist as well as the air expelling capability with the stratified spray characteristics. At this paper, we present the analyzed fire suppression capability of intermittent water spray pattern by use of FDS which is computational fire dynamics fire model. We expect this analysis can support the basic concept to the development of the prototype of water mist nozzle.

Extinguishing Charactristics of Water Mist by Discharge Properties (방사특성 변화에 따른 미세물분무의 소화특성)

  • 이경덕;신창섭
    • Fire Science and Engineering
    • /
    • v.15 no.4
    • /
    • pp.41-48
    • /
    • 2001
  • Halogen-based fire suppressing agents have been the most effective fire suppressants and widely used for flammable liquid and electric fire. However they have environmental problems causing stratospheric ozone depletion and globe warming. As a substitution of halon, fire suppression system using fine water mist is one of an effective fire suppressant. Suffocating and cooling effects of water mist are increased by the evaporation characteristics because it has droplet size less than 1,000 $\mu{m}$ and very large surface area. In this study, the extinguishing characteristics of fire was measured with changing of water mist droplet size, flow density; discharge pressure, and fire size. As a result, the extinguishing time of pool fire was shortened with the increase of flow density and in case of low flow density less than 0.5$\pm$0.05 ml/$\textrm{cm}^2$ . min, the extinguishing time was shortened with the increase of droplet size. The cycling discharge was effective for $\eta$-heptane pool fire, and total amount of water mist required to extinguish fire was reduced to a quarter compare with continuous discharge.

  • PDF

The Crystal Growth of $Bi_{12}GeO_{20}$ Single Crystal by the CZ Technique with New Weighing Sensor (II) (새로운 무게센서에 의한 $Bi_{12}GeO_{20}$ 단결정 육성연구(II))

  • 장영남;배인국
    • Korean Journal of Crystallography
    • /
    • v.9 no.1
    • /
    • pp.30-38
    • /
    • 1998
  • A new frequency weighing sensor was applied to grow Bi12GeO20 crystals in the auto-di-ameter control system of Czochralski method. The rotation rate was varied in the range of 23 to 21 rpm to preserve flat interface in a given heat configuration. To prevent the constitutional super-cooling from the evaporation loss, 105% stoichiometric amount of Bi2O3 was employed, equivalent to 6.18 molar ratio of Bi2O3 to GeO2. Transparent and light brown Bi12GeO20 single crystal in uniform diameter was grown. The dislocation density was determined to be 103/cm2 corresponding to the optical quality in commercial applications. The grown crystal measured diameter 25 mm and length 70 mm and the preferred growth direction was confirmed to be <110>.

  • PDF

Recent Progress in Air-Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2008 (설비공학 분야의 최근 연구 동향: 2008년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Choi, Chang-Ho;Lee, Dae-Young;Kim, Seo-Young;Kwon, Yong-Il;Choi, Jong-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.12
    • /
    • pp.715-732
    • /
    • 2009
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2008. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends in thermal and fluid engineering have been surveyed in the categories of general fluid flow, fluid machinery and piping, new and renewable energy, and fire. Well-developed CFD technologies were widely applied in developing facilities and their systems. New research topics include fire, fuel cell, and solar energy. Research was mainly focused on flow distribution and optimization in the fields of fluid machinery and piping. Topics related to the development of fans and compressors had been popular, but were no longer investigated widely. Research papers on micro heat exchangers using nanofluids and micro pumps were also not presented during this period. There were some studies on thermal reliability and performance in the fields of new and renewable energy. Numerical simulations of smoke ventilation and the spread of fire were the main topics in the field of fire. (2) Research works on heat transfer presented in 2008 have been reviewed in the categories of heat transfer characteristics, industrial heat exchangers, and ground heat exchangers. Research on heat transfer characteristics included thermal transport in cryogenic vessels, dish solar collectors, radiative thermal reflectors, variable conductance heat pipes, and flow condensation and evaporation of refrigerants. In the area of industrial heat exchangers, examined are research on micro-channel plate heat exchangers, liquid cooled cold plates, fin-tube heat exchangers, and frost behavior of heat exchanger fins. Measurements on ground thermal conductivity and on the thermal diffusion characteristics of ground heat exchangers were reported. (3) In the field of refrigeration, many studies were presented on simultaneous heating and cooling heat pump systems. Switching between various operation modes and optimizing the refrigerant charge were considered in this research. Studies of heat pump systems using unutilized energy sources such as sewage water and river water were reported. Evaporative cooling was studied both theoretically and experimentally as a potential alternative to the conventional methods. (4) Research papers on building facilities have been reviewed and divided into studies on heat and cold sources, air conditioning and air cleaning, ventilation, automatic control of heat sources with piping systems, and sound reduction in hydraulic turbine dynamo rooms. In particular, considered were efficient and effective uses of energy resulting in reduced environmental pollution and operating costs. (5) In the field of building environments, many studies focused on health and comfort. Ventilation. system performance was considered to be important in improving indoor air conditions. Due to high oil prices, various tests were planned to examine building energy consumption and to cut life cycle costs.