• Title/Summary/Keyword: Evaporating Spray

Search Result 57, Processing Time 0.022 seconds

A Study on the Mixture Formation Process of Evaporating Diesel Spray by Offset Incidence Laser Beam

  • Yeom, Jeong-Kuk;Kang, Byung-Mu;Lee, Myung-Jun;Chung, Sung-Sik;Ha, Jong-Yul;Hajime Fujimoto
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.12
    • /
    • pp.1702-1709
    • /
    • 2002
  • This paper analyzes heterogeneous distribution of branch-like structure at the downstream region of the spray. The liquid and vapor phase of the spray are obtained using a 35㎜ still camera and CCD camera in order to investigate spray structure of evaporating diesel spray. There have been many studies conducted on diesel spray structure but have yet only focused on the analyses of 2-D structure. There are a few information which is concerned with 3-D structure analysis of evaporating spray. The heterogeneous distribution of droplets in inner spray affects the mixture formation of diesel spray and the combustion characteristics of the diesel engines. In this study, the laser beam of 2-D plane was used in order to investigate 3-D structure of evaporating spray The incident laser beam was offset on the central axis of the spray. From the analysis of images taken by offset laser beam, we will examine the formation mechanism of heterogeneous distribution of the diesel spray by vortex flow at the downstream of the spray. The images of liquid and vapor phase of free spray are simultaneously taken through an exciplex fluorescence method. Through this, the branch-like structure consisting of heterogeneous distribution of the droplets forms high concentrated vapor phase at the periphery of droplets and at the spray tip.

Numerical Investigation of a Steady Non-Evaporating Hollow-Cone Spray Interacting with an Annular Air Jet (정상 할로우 콘 분무와 환형 공기 제트의 상호작용에 관한 수치적 연구)

  • Kim, Woo-Tae;Huh, Kang-Y.
    • Journal of ILASS-Korea
    • /
    • v.5 no.2
    • /
    • pp.43-52
    • /
    • 2000
  • Numerical simulation of steady, non-evaporating hollow-cone sprays interacting with concentric annular air jets is performed using the discrete stochastic particle method in KIVA. The spray characteristics such as SMD, mean droplet velocity, liquid volume flux, air/liquid mass ratio, and droplet number density arc obtained and compared with the measurements involving different air flow rates in large and small annuli. Overall satisfactory agreement is achieved between calculation and experiment except for the deviation in the downstream SMD arising from uncertainty in the size distribution function at injection, and inaccuracy in the averaged spray parameters due to the small volumes of axisymmetric 2-D sector meshes close to the axis.

  • PDF

A Study on the Characteristics of an Evaporating Diesel Spary Using LIEF Technique (LIEF법을 이용한 증발 디젤 분무의 특성에 관한 연구)

  • Kim, Y.R.;Kim, M.S.;Cho, H.;Min, K.D.
    • Journal of ILASS-Korea
    • /
    • v.7 no.3
    • /
    • pp.18-23
    • /
    • 2002
  • An evaporating diesel spray of a common rail lnjector was visualized by LIEF technique. This technique makes it possible to separate the vapor and liquid phase images. The experiment was conducted in a constant volume vessel to make a high temperature and high pressure condition. Three images(vapor and liquid phase images from LIEF and a liquid phase image from Mie scattering) were taken simultaneously in one spray event. The major experimental parameters are the injection pressure and the ambient gas pressure. Also, a relative SMD distribution in a liquid phase was obtained by the ratio of the intensities of the fluorescence and the Mie scattering. The results show that the injection pressure and the ambient gas pressure have a close relation with the spray development and air-fuel muting process.

  • PDF

Effect of the Change in Ambient Gas Density on the Mixture Formation Process in Evaporative Free Diesel Spray (주위기체 밀도변화가 증발자유디젤분무의 혼합기형성과정에 미치는 영향)

  • Yeom, J.K.;Chung, S.S.
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.209-213
    • /
    • 2005
  • The effects of density change of ambient gas on mixture formation process have been investigated in high temperature and pressure field. To analyze the mixture formation process of evaporating diesel spray is important for emissions reduction in actual engines. Ambient gas density was selected as experimental parameter. The ambient gas density was changed from $r_a=5.0kg/m^3\;to\;r_a=12.3kg/m^3$ with a high pressure injection system(ECD-U2). For visualization of the experiment phenomenon, a CVC(Constant Volume Chamber) was used in this study. The ambient temperature and injection pressure are kept as 700K and 72MPa, respectively. The images of liquid and vapor phase in the evaporating free spray were simultaneously taken by exciplex fluorescence method. As experimental results, with increasing ambient gas density, the tip penetration of the evaporating free spray decreases due to the increase in the drag force from ambient gas.

  • PDF

Macroscopic Characteristics of Evaporating Dimethyl Ether(DME) Spray (Dimethyl Ether(DME)의 증발과 거시적 분무 특성)

  • Yu, Jun;Lee, Ju-Kwang;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.58-64
    • /
    • 2003
  • Dimethyl Ether(DME) has been considered as one of the most attractive alternative fuels for compression ignition engine. Its main advantage in diesel engine application is high efficiency of diesel cycle with soot free combustion though conventional fuel injection system has to be modified due to the physical properties of DME. Experimental study of DME and conventional diesel spray employing a common-rail type fuel injection system with a 5-hole sac type injector was performed in a constant volume vessel pressurized by nitrogen gas. Spray cone angles and penetrations of the DME spray were characterized and compared with those of diesel. For evaluation of the evaporating characteristics of the DME, shadowgraphy technique employing an Ar-ion laser and an ICCD camera was adopted. Tip of the DME spray was formed in mushroom-like shape at atmospheric chamber pressure, which disappeared in higher chamber pressure. Spray tip penetration and spray cone angle of the DME became similar to those of diesel under 3MPa of chamber pressure. Higher injection pressure provided wider vapor phase area while it decreased with higher chamber pressure condition.

Study on the Behavior Characteristics of the Evaporative Diesel Spray under Change in Ambient Conditions (주위조건 변화에 대한 증발 디젤분무 거동특성 연구)

  • Yeom, Jeong-Kuk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.6
    • /
    • pp.454-460
    • /
    • 2009
  • To analyze the mixture formation process of evaporating diesel spray is important for emissions reduction in actual engines. Then the effects of change in density of ambient gas on spray structure in high temperature and pressure field have been investigated in this study. The ambient gas density was changed from ${\rho}_a=5.0kg/m^3$ to ${\rho}_a=12.3kg/m^3$ with CVC(Constant Volume Chamber). Also, simulation study by modified KIVA-II code was conducted and compared with experimental results. The ambient temperature and injection pressure are kept as 700K and 72MPa, respectively. The images of liquid and vapor phase in the evaporating free spray were simultaneously taken by exciplex fluorescence method. As experimental results, with increasing ambient gas density, the tip penetration of the evaporating free spray decreases due to the increase in the drag force from ambient gas. The spatial structure of a diesel spray can be verified as 2-regions consisted of liquid with momentum decrease and vapor with large-scale vortex. The calculated results obtained by modified KIVA-II code show good agreements with experimental results.

SPRAY CHARACTERISTICS OF DIRECTLY INJECTED LPG

  • Lee, S.W.;Y. Daisho
    • International Journal of Automotive Technology
    • /
    • v.5 no.4
    • /
    • pp.239-245
    • /
    • 2004
  • It has been recognized that alternative fuels such as Liquid Petroleum Gas (LPG) show less polluting combustion characteristics than diesel fuel. Furthermore, engine performance is expected to be nearly equal to that of the diesel engine if direct-injection stratified-charge combustion of the LPG can be adopted in the spark-ignition engine. However, spray characteristics of LPG are quite different from those of diesel fuel. understanding the spray characteristics of LPG and evaporating processes are very important for developing efficient and low emission LPG engines optimized in fuel injection control and combustion processes. In this study, the LPG spray characteristics and evaporating processes were investigated using the Schlieren and Mie scattering optical system and single-hole injectors in a constant volume chamber. The results show that the mixture moves along the impingement wall that reproduced the piston bowl and reaches in ignition spark plug. LPG spray receives more influence of ambient pressure and temperature significantly than that of n-dodecane spray.

Spray Structures and Vaporizing Characteristics of a GDI Fuel Spray

  • Park, Dong-Seok;Park, Gyung-Min;Kim, Duck-Jool
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.7
    • /
    • pp.999-1008
    • /
    • 2002
  • The spray structures and distribution characteristics of liquid and vapor phases in non-evaporating and evaporating Gasoline Direct Injection (GDI) fuel sprays were investigated using Laser Induced Exciplex Fluorescence (LIEF) technique. Dopants were 2% fluorobenzene and 9% DEMA (diethyl-methyl-amine) in 89% solution of hexane by volume. In order to study internal structure of the spray, droplet size and velocity under non-evaporating condition were measured by Phase Doppler Anemometry (PDA). Liquid and vapor phases were visualized at different moments after the start of injection. Experimental results showed that the spray could be divided into two regions by the fluorescence intensity of liquid phase: cone and mixing regions. Moreover, vortex flow of vapor phase was found in the mixing region. About 5㎛ diameter droplets were mostly distributed in the vortex flow region. Higher concentration of vapor phase due to vaporization of these droplets was distributed in this region. Particularly, higher concentration of vapor phase and lower one were balanced within the measurement area at 2ms after the start of injection.

Numerical Studies on Vaporization Characterization and Combustion Processes in High-Pressure Fuel Sprays (고압 상태에서의 연료 분무의 증발 및 연소 특성 해석)

  • Moon, Y.W.;Kim, Y.M.;Kim, S.W.;Kim, J.Y.;Yoon, I.Y.
    • Journal of ILASS-Korea
    • /
    • v.3 no.3
    • /
    • pp.49-59
    • /
    • 1998
  • The vaporization characteristics and spray combustion processes in the high-pressure environment are numerically investigated. This study employ the high-pressure vaporization model together with the state-of-art spray submodels. The present high-pressure vaporization model can account for transient liquid heating, circulation effect inside the droplet forced convection, Stefan flow effect, real gas effect and ambient gas solubility in the liquid droplets. Computations are carried out for the evaporating sprays, the evaporating and burning sprays, and the spray combustion processes of the turbocharged diesel engine. Numerical results indicate that the high-pressure effects are quite crucial for simulating the spray combustion processes including vaporization, spray dynamics, combustion, and pollutant formation.

  • PDF

A Study on the Spray Characteristics of CRDI System with Ambient Pressure (분위기압력에 따른 CRDI 분사계의 분무특성 연구)

  • Kim, Sang-Am;Wang, Woo-Gyeong
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.21-28
    • /
    • 2014
  • The studies of the spray characteristics for a CRDI engine had been advancing by many researchers, because the performance and exhaust emission were significantly affected with the spray characteristics. But most experiments of the studies would be done at low ambient pressure conditions under 2MPa. In this study, injection rates were measured with Zeuch's method at various ambient pressures to 5MPa and a constant injection pressure of 130MPa. On the same conditions, non-evaporating spray images were taken with a high speed camera and analyzed carefully with Adobe Photoshop CS3. Macroscopic spray characteristics and breakup processes in the spray could be found from the examined and analyzed data. The initial injection rate, penetration, angle, velocity and breakup of the spray were practically affected with a variation of the ambient pressure, but the injection start time and injection period were scarcely affected. As the ambient pressure was higher, the breakup of a high density droplet region in the spray was happened slowly and the main position of breakup was shifted from a front of the spray to a upstream around a nozzle. The results and techniques of spray visualization and injection rate measurement in this study would be practically effective to study a high pressure diesel spray for a CRDI.