• 제목/요약/키워드: Evaluation of Ride Quality

검색결과 44건 처리시간 0.034초

차량 아이들 감성진동 평가를 위한 진동평가지수의 연구 (Development of Vibration Index for the Objective Evaluations of Idle Vibration Quality in a Passenger Car)

  • 박홍석;이상권;윤기수;이민섭
    • 한국소음진동공학회논문집
    • /
    • 제22권3호
    • /
    • pp.214-222
    • /
    • 2012
  • Driver's feeling is variously affected by lots of components such as engine, frame, wheels, and seats during the operation of automobiles. The main objective of this research is to identify the correlation between subjective evaluation and vibration metrics that was set by ISO to investigate development of the car vibration quality index using multiple linear regressions(MLR). A previous research related with automotive vibration quality used the method of calculating acceleration values of the point of a seat, a seat back, foot as RMS for objective evaluation. The automotive comfort is determined by RMS values. In comparison with the previous research, this study includes not only the vibration metrics, but also subjective values by jury evaluation. By indentifying the correlation between subjective evaluation and vibration metrics, the automotive vibration quality index is developed through MLR. Based on the results of this study, the proposed the automotive vibration quality index which developed through MLR will be helpful to obtain objective and reliable automotive comfort values.

차량 아이들 감성진동 평가를 위한 진동평가지수의 연구 (Development of Vibration Index for the Objective Evaluations of Idle Vibration Quality in a Passenger Car)

  • 박홍석;이상권;윤기수;이민섭
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 추계학술대회 논문집
    • /
    • pp.683-688
    • /
    • 2012
  • Driver's feeling is variously affected by lots of components such as engine, frame, wheels, and seats during the operation of automobiles. The main objective of this research is to identify the correlation between subjective evaluation and vibration metrics that was set by ISO to investigate development of the car vibration quality index using multiple linear regressions (MLR). A previous research related with automotive vibration quality used the method of calculating acceleration values of the point of a seat, a seat back, foot as RMS for objective evaluation. The automotive comfort is determined by RMS values. In comparison with the previous research, this study includes not only the vibration metrics, but also subjective values by jury evaluation. By indentifying the correlation between subjective evaluation and vibration metrics, the automotive vibration quality index is developed through MLR. Based on the results of this study, the proposed the automotive vibration quality index which developed through MLR will be helpful to obtain objective and reliable automotive comfort values.

  • PDF

피스톤 바이패스 유로가 있는 MR 댐퍼 장착 1/4 차량 현가시스템의 성능평가 (Performance Evaluation of a Quarter Car Suspension System Installed with MR Damper Featuring Bypass Flow Holes in Piston)

  • 김완호;황용훈;박진하;신철수;최승복
    • 한국소음진동공학회논문집
    • /
    • 제27권1호
    • /
    • pp.65-71
    • /
    • 2017
  • This work presents a comparative work on the ride comfort of a quarter car suspension system between two different magneto-rheological (MR) dampers; one is conventional type without bypass hole and the other is featured by several bypass holes in the piston. As a first step, two different MR dampers are designed on the basis of the governing equation and manufactured with same geometric dimensions except the bypass holes. After investigating the field-dependent damping properties, two dampers are installed to the quarter car suspension system. The suspension model is then derived and a sky-hook controller is implemented to identify vibration control performance under random road. It is shown that the suspension system with MR damper featured by the bypass holes can provide much better ride quality than the case without the bypass holes. This is validated via experimental implementation.

철도차량 구조건전성모니터링: 손상 감지 기술 분석 (Structural Health Monitoring for Trains: A review of damage detection methods)

  • 정시옌;이정율;김정석;윤혁진
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 추계학술대회 논문집
    • /
    • pp.1545-1561
    • /
    • 2008
  • Among all transportations, railway transports have been promisingly offering excellent energy conservation and travelling time. Inevitably, they become a main role in not only transport goods but also passengers. With leap in development of technology, trains have tremendously enhanced their services in terms of speed, accessibility and comfort. However, the safety and ride quality have become a main issue as the train speed increased. The higher speeds have led the structural dynamics and health must be monitored from time to time to ensure that they are in good condition to provide reliable ride. Among all monitoring systems, the structural health monitoring (SHM) systems are imperative important due to its capability of in-situ monitoring and inherently reduce the maintenance frequencies and the huge associated cost. In this paper, SHM systems and the related non-destructive test and evaluation methods were discussed. The types of damages related to train vehicles as well as the damage hot spots are also included in this paper.

  • PDF

자동차 시트의 피로도 평가를 위한 근전도 평가를 위한 근전도 측정기의 사용 (The Use of Electromyography for Fatigue Evaluation of Automotive Seats)

  • 이영신;이의신;박세진
    • 대한인간공학회:학술대회논문집
    • /
    • 대한인간공학회 1997년도 춘계학술대회논문집
    • /
    • pp.10-16
    • /
    • 1997
  • The ride comfort is one of the most important indices which decide the quality of automotive seats. A subjective evaluation is the general method for comfort evaluation of automotive seats. But the subjective evaluation assess the individual sensibility using questionnaire. Therefore, a need to develop methodologies to obtain objective measurements of the fatigue evaluation is evident. In an effort to monitor muscle activity during driving electromyography (EMG) was employed. In an experimental setting the subjective evaluation was conducted using questionnaire under the static conditions (8 subjects) and the fatigue was induced in muscles using EMG under the dynamic conditions (2 drivers). The resultant EMG signals were then sampled for three different muscles. In test involving 2 subjects of similar size and build, utilizing four different automotive seats, test results support the use of EMG to quantify muscular fatigue as a viable means of objective evaluation for the different automotive seats.

  • PDF

승차감 향상을 위한 자동차 현가장치의 반능동제어에 관한 연구 (Semi-active control of a vehicle suspension for the ride quality improvement)

  • 박호;오재응
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.783-788
    • /
    • 1990
  • Computer simulation is carried out for passive, active, and semi-active suspension system. Each RMS and frequency response to road profile input is calculated for comparison and evaluation of the performance. The vibration analysis and active control of the quarter model of a vehicle suspension is studied in order to evaluate the alternative control laws. This paper derives an optimal closed-loop feedback law for the semi-active suspension that justifies the clipped optimal approach.

  • PDF

고속도로 이용자의 승차감 평가특성 및 만족도 분석과 ROC 곡선을 이용한 평탄성 관리기준 적정성 검토 (Analysis of Riding Quality Acceptability and Characteristics of Expressway Users and Evaluation of MRI Thresholds using Receiver Operating Characteristic curves)

  • 이재훈;손덕수;류성우;김용원;박준영
    • 한국도로학회논문집
    • /
    • 제20권2호
    • /
    • pp.35-44
    • /
    • 2018
  • PURPOSES : The purpose of this research is to analyze the characteristics of panels that affect the evaluating results of riding quality and to evaluate the appropriateness of roughness management criteria based on ride comfort satisfaction. METHODS : In order to analyze the influence of panel characteristics of riding quality, 33 panels, consisting of civilians and experts, were selected. Also, considering the roughness distribution of the expressway, 35 sections with MRI ranging from 1.17 m/km to 4.65 m/km were selected. Each panel boarded a passenger car and evaluated the riding quality with grades from 0 to 10, and assessed whether it was satisfied or not. After removing outlier results using a box plot technique, 964 results were analyzed. An ANOVA was conducted to evaluate the effects of panel expertise, age, driving experience, vehicle ownership, and gender on the evaluation results. In addition, by using the receiver operating characteristics (ROC) curve, the MRI value, which can most accurately evaluate the satisfaction with riding quality, was derived. Then, the compatibility of MRI was evaluated using AUC as a criterion to assess whether the riding quality was satisfactory. RESULTS : Only the age of the panel participants were found to have an effect on the riding quality satisfaction. It was found that satisfaction with riding quality and MRI are strongly correlated. The satisfaction rate of roughness management criteria on new (MRI 1.6 m/km) and maintenance (MRI 3.0 m/km) expressways were 95% and 53%, respectively. As a result of evaluating the roughness management criteria by using the ROC curve, it was found that the accuracy of satisfaction was the highest at MRI 3.1-3.2 m/km. In addition, the AUC of the MRI was about 0.8, indicating that the MRI was an appropriate index for evaluating the riding quality satisfaction. CONCLUSIONS : Based on the results, the distribution of the panels' age should be considered when panel rating is conducted. From the results of the ROC curve, MRI of 3.0 m/km, which is a criterion of roughness management on maintenance expressways, is considered as appropriate.

능동과 반능동 현가장치로 된 전차량 모델에 대한 스카이훅 제어기의 비교 평가 (Comparative Evaluation of Sky-Hook Controllers for a Full Car Model with Active or Semi-Active Suspension Systems)

  • 윤일중;임재필
    • 제어로봇시스템학회논문지
    • /
    • 제7권7호
    • /
    • pp.614-621
    • /
    • 2001
  • The controllers for a full car 7-DOF model with 4 active or semi-active suspension units are designed and evaluated in this research. The control algorithms for suspension systems, such as full state feedback active, full state feedback semi-active, sky-hook active, sky-hook semi-actvie, and on-off suspension systems, are analyzed and evaluated with respect to ride comfort. The vehicle dynamic performances are expressed by response curves to a bump input, performance indices for asphalt road input, and frequency characteristic curves. Heaving, rolling, and pitching inputs are applied to the vehicle dynamic system to evaluate frequency characteristics. The simulation results show that the ride quality of the sky-hook controller approaches that the full state feedback controller more closely in semi-active suspension system than in active suspension system. For the implementation of a vehicle with sky-hook suspension control systems in this paper, 7 velocity sensors are required to measure the states.

  • PDF

자동차 현가장치의 적응제어를 위한 feedback 시스템의 성능감도 해석 (Performance sensitivity analysis of feedback system for adaptive control of a vehicle suspension)

  • 박호;전의식;오재응
    • 오토저널
    • /
    • 제13권1호
    • /
    • pp.35-45
    • /
    • 1991
  • A linear quarter model of a vehicle suspension system is built and simulated. Especially the so-called sensitivity analysis is conducted in order to show its applicability to design problems, and sensitivity function is determined in the frequency domain. The change of frequency response function is predicted, which depends on the design parameter variation and the property is verified by computer simulation. Typical performance measures, namely, sprung mass acceleration, suspension deflection, and tire deflection are examined. The vehicle model is analyzed for ist performance sensitivity as a function of the system's feedback gains. The variable feedback gains are selected as the spring and damping coefficients. Frequency response, RMS response, and performance index of the performance evaluation variables are considered and three-dimensional and contour plots of response surfaces are formed to examine output sensitivity to suspension feedback. Performance trade-offs over the entire frequency spectrum are identified from the FRF, and that between ride quality and handling characteristics are examined from the RMS responses.

  • PDF

MR 댐퍼를 적용한 철도차량 현가장치의 설계 및 제어 (Design and Control of Railway Vehicle Suspension System Featured by MR Damper)

  • 하성훈;최승복;이규섭
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2010년도 추계학술대회 논문집
    • /
    • pp.71-76
    • /
    • 2010
  • This paper presents the feasibility for improving the ride quality of railway vehicle equipped with semi-active suspension system using magnetorheological(MR) fluid damper. In order to achieve this goal, a fifteen degree of freedom of railway vehicle model, which includes a car body, bogie frame and wheel-set is proposed to represent lateral, yaw and roll motions. The MR damper system is incorporated with the governing equation of motion of the railway vehicle which includes secondary suspension. To illustrate the effectiveness of the controlled MR dampers on railway vehicle secondary suspension system, the sky-hook control law using the velocity feedback is adopted. Computer simulation for performance evaluation is performed using Matlab. Various control performances are demonstrated under external excitation which is the creep force between wheel and rail.

  • PDF