• Title/Summary/Keyword: Evaluation of Ride Quality

Search Result 44, Processing Time 0.026 seconds

Evaluation of Ride Vibration of Agricultural Tractors(I) - A Review of Ride Quality Evaluation Criteria - (농용 트랙터의 승차(乘車) 진동(振動) 평가에 관한 연구(I) - 승차 진동의 평가 기준에 관한 고찰 -)

  • Chung, S.S.;Moon, G.S.;Kim, K.U.
    • Journal of Biosystems Engineering
    • /
    • v.17 no.4
    • /
    • pp.314-325
    • /
    • 1992
  • This paper reviews some relevant criteria for the evaluation of ride quality of agricultural tractors. Although there still exist many deficiences and shortcomings, ISO 2631 'Guide for the evaluation of human exposure to whole body vibration' may be the most pertinent criterion to the ride quality evaluation of tractors. The effects of ride vibrations on the human health and performance were also reviewed and summarized in general terms.

  • PDF

Human Response Measurement and Ride Quality Evaluation for Seats having various Material Porperties (물성치가 다른 시트에서의 인체 진동 측정 및 승차감 평가)

  • 조영건;박세진;윤용산
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.3
    • /
    • pp.171-180
    • /
    • 2000
  • This paper deals with the whole-body vibration and ride quality evaluation in the vertical direction. The responses of the floor, hip, back, and head in four subjects were measured for various seats when the floor was excited by random vibration with r.m.s of 1.2m/s2 in the vertical direction. In the transmissibility between the hip and floor, the fundamental mode is observed at 4.4 Hz. In the transmissibility between the head and floor, the fundamental mode at 4.4Hz and the second mode at 7.6Hz are observed. It is shown that the head motion is 41% larger than the hip motion and the response of female subject is larger than that of male subject. The response without backrest also was compared with that with backrest. From these human responses ride quality of five seats were evaluated by the ride value such as transfer ration having frequency weighting function is the statistical sense. It is observed that the seat having high damping property can reduce the most acceleration exposed to hip in the statistical sense for all ride valves, while the seat having different seat spring doesn't show statistical difference.

  • PDF

The Nonlinear Simulation on the Selection of Suitable Suspension Considering Human Vibration (인체 진동을 고려한 최적 현가장치의 선정에 관한 비선형 모의실험)

  • 김진기;홍동표;최만용
    • Journal of KSNVE
    • /
    • v.10 no.2
    • /
    • pp.247-253
    • /
    • 2000
  • The evaluation of the ride quality had been performed by the subjective method before ISO2631(International Organization for Stadard 2631) and BS6841(British Standard 6841) was precented, but many research programs have been performed by the objective method after that. On this study, the ride quality was evaluated related with the objective method which considered the vibration which the human body feels on the driver's seat while driving on the road. In particular, we made the shock absorber nonlinear model and also selected the suitable shock absorber in the part of the vibration which the human body feels into the simulation. The shock absorber of suspension was dealt with 3 cases respectively with the front wheel and rear wheel. The vibration of the car driving on the road can be transferred to the wheel, the suspension, the vehicle body, the seat and the human body. The signal which was gained from the seat(hip) and the floor(foot) of the human body was changed to the vibration signal which the human body felt through using the frequency weighting function. And then the performance of the shock absorber was calculated through the statistic processing.

  • PDF

Ride Quality Assessment of Automative Seats by Simultaneous 3-Axis Excitation (동시 3축 가진에 의한 자동차 의자류의 승차감 평가)

  • 정완섭;우춘규;박세진;김수현
    • Journal of KSNVE
    • /
    • v.7 no.1
    • /
    • pp.143-152
    • /
    • 1997
  • This paper introduces experimental results of the ride qulaity characteristics of automotive seats fixed on the vibration table that is noving simultaneously to the three-axis in a similar way to the real running condition. Vibration experiment was carried out for five different automotive seats and four Korean individuals. The assessment of the ride quality characteristics for each seat and indiviual was made not only from the analysis of vibration measurements but also from the evaluation of weighied vibration signals, which were obtained using the frequency weighting function and the multiplication factor dependent on the position and axis of vibration exposure to wehole-body. The usefulness of those assessment results in analysis of the ride quality of seats is discussed and their limitation is also pointed out in this paper.

  • PDF

Evaluation of the Ride Values of Passenger Cars on the Unevenness and Endurance Roads (내구력 도로와 요철 도로에서 승용차의 승차감 지수 평가)

  • 조영건;정완섭;박세진;윤용산
    • Journal of KSNVE
    • /
    • v.7 no.6
    • /
    • pp.1025-1030
    • /
    • 1997
  • This paper introduces the experimental results of ride values assessed for several passenger cars. The experiment was conducted at four vehicles on two roads for three persons by measuring the acceleration in the 12-axis of human. The results include the comparison of the ride values, such as the component ride values, overall ride value, and seat effective amplitude transmissibiity. It is proved that acceleration between 1 and 15Hz is the most significant in evaluating the ride quality. The contribution of the acceleration in each measurement axis is quantified from the component ride value. SEAT value shows a relatively low sensitivity for the road condition and human mass.

  • PDF

Design of dynamic Characteristic of Seat using Estimated Biomechanical Model (인체 진동 모델을 이용한 시트 동적 설계)

  • 조영건;윤용산;박세진
    • Journal of KSNVE
    • /
    • v.10 no.5
    • /
    • pp.811-818
    • /
    • 2000
  • This paper deals with the design of a car seat for enhancing dynamic ride quality using a Biomechanical Model that was developed from the measured whole-body vibration characteristic. For evaluation of seat ride quality, the z-axis acceleration of floor as an input of biomechanical model was measured on a driving passenger car at highway and national road. Form the floor signal and the estimated biomechanical model, overall ride value evaluated by parameter study of seat stiffness and damping. The result shows that overall ride value decreases as the seat damping increases and the sear stiffness decreases. A lot of polyurethane foams were manufactured and tried to evaluate dynamic ride quality of a seat. It is found that stiffness and damping of a seat show a linear relationship, which means the stiffness and damping are not independent each other, So the optimal seat parameters within practically achievable space are determined.

  • PDF

Evaluation of Ride Quality Sensitivity on Vehicle Dynamic Behavior Using a Small Scale Simulator (소형 시뮬레이터를 이용한 차량거동요소별 승차감 민감도 평가)

  • Lee, Jaehoon;Sohn, Ducksu;Park, Jejin;Mun, Hyungchul
    • International Journal of Highway Engineering
    • /
    • v.19 no.5
    • /
    • pp.97-106
    • /
    • 2017
  • PURPOSES: This study aims to evaluate the effects of vehicle dynamic behaviors on ride quality. METHODS : Simulation and field test were conducted to analyze the behavior of a driving vehicle. The simulation program CarSIM was applied and an INS (Inertial Navigation System) was used for field experiments. A small simulator was developed to simulate vehicle behavior such as roll, pitch, and bounce. The panels evaluated the ride quality in five stages from "very satisfied"to "very dissatisfied."Experiments were conducted on a total of 144 cases of vehicle behavior combinations. RESULTS :In both simulation and field tests, pitch is the largest and yaw the smallest. Especially in the field test, the amount of yaw is very low, about 7% of pitch and 18% of roll. The sensitive and extensive analysis conducted related ride quality with changing the frequency and amplitude. It was found that the most sensitive frequency range is 8 Hz across all amplitudes. Moreover, the combination of the roll and bounce was most sensitive to the ride quality at the low-frequency range. CONCLUSIONS : This result show that the vertical vehicle behavior (bounce) as well as the rotational behavior (roll and pitch) are highly correlated with ride quality. Therefore, it is expected that a more reasonable roughness index can be developed through a combination of vertical and rotational vehicle behavior.

A Study on the Evaluation of Ride Comfort using Human Model (인체모델을 사용한 승차감의 정량적 평가에 관한 연구)

  • Kim, Kwangsuk
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.3
    • /
    • pp.57-64
    • /
    • 2011
  • Vibrations on the floor in a car are transmitted to the foot, hip, and back from the seat. Human body recognizes these vibrations, but the sensitivity for each vibration is different. To evaluate these vibrations, RMS(root mean square) of accelerations, VDV(vibration does value) are commonly used. The ride comfort evaluation is usually carried out by experiments of real cars which are expensive. The purpose of this paper is to briefly review the status of several ride vibration standards and criteria having relevance to construction machinery vehicles and to suggest recommendations for the effective use of such criteria in vehicle / component development.

Ride Quality Evaluation of Agricultural tractor Seats (농용 트랙터의 시트의 진동 승차감 평가)

  • 이종광;박세진;강영선;강이석
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2001.02a
    • /
    • pp.16-21
    • /
    • 2001
  • The ride quality of agricultural tractor seats is evaluated based on the vibration of the human bodies. Tractor ride vibration levels have been measured at the person-seat interface along 7 axes(3 translational axes at the feet, 3 translational axes on a seat surface and 1 axis at the seat back), under different operating conditions. Since one of the most important parameters for ride comfort is the level and duration of the root mean square acceleration experienced, the ride values, such as the seat effective amplitude transmissibility, the component ride value, and the overall ride value based on acceleration root mean square are evaluated for a conventional tractor using frequency weighting functions and axis multiplying factors. The ride indices are also studied considering to the variation of vehicle speed and road profile.

  • PDF

The Research for Higher Ride Quality with OPAX and OTPA (변수모델을 사용한 전달경로분석법(OPAX)과 전달률 함수를 사용한 전달경로분석법(OTPA)을 사용한 승차감 향상 연구)

  • Shin, Kwangsoo;Choi, Sangill;Kim, Jongsik;Lee, Sangkwon;Im, Sebin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.1
    • /
    • pp.65-73
    • /
    • 2015
  • The ride quality has become a key component of not only design but car selling as the technology developed and the requirement of passengers grew up. Thus car industry invests lots of time and cost for the higher ride quality. The evaluation of the ride quality mainly is expressed by subjective element that drivers felt. In this paper, instead of the original transfer path analysis method, relatively new methods such as OPAX(Operational path analysis with eXogeneous inputs) and OTPA(operational transfer path analysis) are used for analyzing the main hindrance element of ride quality. With those new method, contribution rate of all paths that the vibration propagate along analyzed after driving test on the roads having different characteristic. The comprehensive hindrance elements of ride quality are deduced from the contribution rate and the improve experiment by changing one of hindrance elements for higher ride quality.