• 제목/요약/키워드: Evaluation of Performance Parameter

검색결과 434건 처리시간 0.031초

On Unicast Routing Algorithm Based on Estimated Path for Delay Constrained Least Cost (경로 추정 기반의 지연시간을 고려한 저비용 유니캐스트 라우팅 알고리즘)

  • Kim, Moon-Seong;Bang, Young-Cheol;Choo, Hyun-Seung
    • Journal of Internet Computing and Services
    • /
    • 제8권1호
    • /
    • pp.25-31
    • /
    • 2007
  • The development of efficient Quality of Service (QoS) routing algorithms in high speed networks is very difficult since divergent services require various quality conditions, If the QoS parameter we concern is to measure the delay on that link, then the routing algorithm obtains the Least Delay (LD) path, Meanwhile, if the parameter is to measure of the link cast, then it calculates the Least Cost (LC) path. The Delay Constrained Least Cast (DCLC) path problem of the mixed issues on LD and LC has been shown to be NP-hard. The path cost of LD path is relatively mere expensive than that of LC path, and the path delay of LC path is relatively higher than that of LD path in DCLC problem. In this paper. we propose the algorithm based on estimated path for the DCLC problem and investigate its performance, It employs a new parameter which is probabilistic combination of cost and delay, We have performed empirical evaluation that compares our proposed algorithm with the DCUR in various network situations.

  • PDF

Selection of bandwidth for local linear composite quantile regression smoothing (국소 선형 복합 분위수 회귀에서의 평활계수 선택)

  • Jhun, Myoungshic;Kang, Jongkyeong;Bang, Sungwan
    • The Korean Journal of Applied Statistics
    • /
    • 제30권5호
    • /
    • pp.733-745
    • /
    • 2017
  • Local composite quantile regression is a useful non-parametric regression method widely used for its high efficiency. Data smoothing methods using kernel are typically used in the estimation process with performances that rely largely on the smoothing parameter rather than the kernel. However, $L_2$-norm is generally used as criterion to estimate the performance of the regression function. In addition, many studies have been conducted on the selection of smoothing parameters that minimize mean square error (MSE) or mean integrated square error (MISE). In this paper, we explored the optimality of selecting smoothing parameters that determine the performance of non-parametric regression models using local linear composite quantile regression. As evaluation criteria for the choice of smoothing parameter, we used mean absolute error (MAE) and mean integrated absolute error (MIAE), which have not been researched extensively due to mathematical difficulties. We proved the uniqueness of the optimal smoothing parameter based on MAE and MIAE. Furthermore, we compared the optimal smoothing parameter based on the proposed criteria (MAE and MIAE) with existing criteria (MSE and MISE). In this process, the properties of the proposed method were investigated through simulation studies in various situations.

Comparison of Performance and Stability Parameters for Soybean Yield (콩 수량안전성 분석방법간 비교)

  • Suk-Ha, Lee;Yong-Hwan, Ryu;Yeul-Gue, Seung;Seok-Dong, Kim;Eun-Hi, Hong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • 제42권5호
    • /
    • pp.604-608
    • /
    • 1997
  • Ten selected soybean genotypes, consisting of nine from a pedigree breeding programme and one recommended variety, were evaluated in nine different locations and over two years for stability of yield performance. Variance component analysis revealed that soybean regional yield trials should be performed at more locations rather than in more years. Five stability parameters, which were coefficient of variability, regression coefficient, deviation parameter, variance component for genotype$\times$environment interaction, and ecovalence, were employed in the evaluation. Significant genotype$\times$environment interaction was present with respect to soybean yield. The highest average yield over nine locations and two years was shown in Suwon 145, which was considered to be stable in all stability statistics. In rank correlation among stability parameters, there were highly significant correlations among stability parameters derived from three Eberhart and Russell's, Plaisted's, and Wricke's methods. Due to the different ranking of genotypes by different stability parameters, a comprehensive method should be employed to identify the promising genotype as well as to characterize the relationship between genotype and environment.

  • PDF

Model-Prediction-based Collision-Avoidance Algorithm for Excavators Using the RLS Estimation of Rotational Inertia (회전관성의 순환최소자승 추정을 이용한 모델 예견 기반 굴삭기의 충돌회피 알고리즘 개발)

  • Oh, Kwang Seok;Seo, Jaho;Lee, Geun Ho
    • Journal of Drive and Control
    • /
    • 제13권4호
    • /
    • pp.59-67
    • /
    • 2016
  • This paper proposes a model-prediction-based collision-avoidance algorithm for excavators for which the recursive-least-squares (RLS) estimation of the excavator's rotational inertia is used. To estimate the rotational inertia of the excavator, the RLS estimation with multiple forgetting and two updating rules for the nominal parameter and the forgetting factors was conducted based on the excavator-swing dynamics. The average value of the estimated rotational inertia that is for the minimizing effects of the estimation error was computed using the recursive-average method with forgetting. Based on the swing dynamics, the computed average of the rotational inertia, the damping coefficient for braking, and the excavator's braking angle were predicted, and the predicted braking angle was compared with the detected-object angle for a safety evaluation. The safety level defined in this study consists of the three levels safe, warning, and emergency braking. The analytical rotational-inertia-based performance evaluation of the designed estimation algorithm was conducted using a typical working scenario. The results of the safety evaluation show that the predictive safety-evaluation algorithm of the proposed model can evaluate the safety level of the excavator during its operation.

Probabilistic sensitivity of base-isolated buildings to uncertainties

  • Gazi, Hatice;Alhan, Cenk
    • Smart Structures and Systems
    • /
    • 제22권4호
    • /
    • pp.441-457
    • /
    • 2018
  • Characteristic parameter values of seismic isolators deviate from their nominal design values due to uncertainties and/or errors in their material properties and element dimensions, etc. Deviations may increase over service life due to environmental effects and service conditions. For accurate evaluation of the seismic safety level, all such effects, which would result in deviations in the structural response, need to be taken into account. In this study, the sensitivity of the probability of failure of the structures equipped with nonlinear base isolation systems to the uncertainties in various isolation system characteristic parameters is investigated in terms of various isolation system and superstructure response parameters in the context of a realistic three-dimensional base-isolated building model via Monte Carlo Simulations. The inherent record-to-record variability nature of the earthquake ground motions is also taken into account by carrying out analyses for a large number of ground motion records which are classified as those with and without forward-directivity effects. Two levels of nominal isolation periods each with three different levels of uncertainty are considered. Comparative plots of cumulative distribution functions and related statistical evaluation presented here portray the potential extent of the deviation of the structural response parameters resulting from the uncertainties and the uncertainty levels considered, which is expected to be useful for practicing engineers in evaluating isolator test results for their projects.

Performance Evaluation of Multi-Module Software System with Imperfect Debugging and Module Dependency (모듈의존성을 갖는 불완전수리 다항모듈 소프트웨어의 성능평가에 관한 연구)

  • Kim, U-Jung;Lee, Chong Hyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제15권9호
    • /
    • pp.5652-5659
    • /
    • 2014
  • The purpose of this study was to introduce a software task processing evaluation model that considers the following situations: i) a software system is integratedly composed of several number of modules, ii) each modules has its corresponding module task, iii) all module tasks are tested simultaneously, and iv) the processing times of the module tasks are mutually dependent. The software task completion probability with the module dependency was derived using the joint distribution function of Farlie [11]. The results showed that the task completion probability of software increases with increasing module dependency parameter.

A Study on Evaluation of Machinability using cuter Runout in Ball-end Milling (볼엔드밀 가공에서 런아웃 측정을 통한 가공성 평가에 관한 연구)

  • Kim, Byoung-Kook;Park, Hee-Bum;Lee, Deug-Woo;Kim, Jeong-Suk;Jung, Yoong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제16권10호
    • /
    • pp.35-44
    • /
    • 1999
  • The performance of interrupted cutting operations like milling is consideraly affected by cuter runout. In this study, cutter runout is selected as an important machining parameter for evaluation of machinability in ball-end milling and caused from misalignments of tool and holder, unbalanced mass of parts and tool deflection under machining. To evaluate the machinability due to cutter runout, the rotating accuracy of spindle, cutting force and surface roughness are measured. The rotating characteristics of spindle in each revolution speed were investigated by cutter runout in freeload. The predicted surface form of workpiece by measuring cutter runout data was compared with real surfaces. The results show that measuring runout with high response gap sensor is useful for studying the phenomenon of high-speed machining and the monitor surface form using in-process runout measurements in ball-end milling is possible.

  • PDF

Evaluation of Robust Performance of Fuzzy Supervisory Control Technique (퍼지관리제어기법의 강인성능평가)

  • Ok, Seung-Yong;Park, Kwan-Soon;Koh, Hyun-Moo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • 제9권5호
    • /
    • pp.41-52
    • /
    • 2005
  • Using the variable control gain scheme on the basis of fuzzy-based decision-making process, Fuzzy supervisory control (FSC) technique exhibits better control performance than linear control technique with one static control gain. This paper demonstrates the effectiveness of the FSC technique by evaluating the robust performance of the FSC technique under the presence of uncertainties in the models and the excitations. Robust performance of the FSC system is compared with that of optimally designed LQG control system for the benchmark cable-stayed bridge presented by Dyke et al. Parameter studies on the robust performance evaluation are carried out by varying the stiffness of the bridge model as well as the magnitudes of several earthquakes with different frequency contents. From the comparative study of two control systems, FSC system shows the enhanced control performance against various magnitudes of several earthquakes while maintaining lower level of power required for controlling the bridge response. Especially, FSC system clearly guarantees the improved robust performance of the control system with stable reduction effects on the seismic responses and slight increases in total power and stroke for the control system, while LQG control system exhibits poor robust performance.

A rolling analysis on the prediction of value at risk with multivariate GARCH and copula

  • Bai, Yang;Dang, Yibo;Park, Cheolwoo;Lee, Taewook
    • Communications for Statistical Applications and Methods
    • /
    • 제25권6호
    • /
    • pp.605-618
    • /
    • 2018
  • Risk management has been a crucial part of the daily operations of the financial industry over the past two decades. Value at Risk (VaR), a quantitative measure introduced by JP Morgan in 1995, is the most popular and simplest quantitative measure of risk. VaR has been widely applied to the risk evaluation over all types of financial activities, including portfolio management and asset allocation. This paper uses the implementations of multivariate GARCH models and copula methods to illustrate the performance of a one-day-ahead VaR prediction modeling process for high-dimensional portfolios. Many factors, such as the interaction among included assets, are included in the modeling process. Additionally, empirical data analyses and backtesting results are demonstrated through a rolling analysis, which help capture the instability of parameter estimates. We find that our way of modeling is relatively robust and flexible.

Method of Optimum Efficiency to Coefficient of Utilization for Single Phase Induction Motor (단상 유도전동기의 이용률 변동에 대한 최적효율 산정기법)

  • Kim, Yang-Ho;Kim, Young-Sun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • 제55권4호
    • /
    • pp.155-160
    • /
    • 2006
  • In this paper, deduced suitable optimization to request output condition after taking closely characteristic data of single phase induction motor(SIM) which is the possibility becoming economic is coming to be demanded. Motor proper move connection data took advantage of result of existing data and iron loss and copper loss, mechanical loss took advantage of statistical data, and decide motor move laking advantage of saving data and secondary resistance and optimum purpose of method that is proposed through single phase induction motor and comparison performance evaluation having on the same output parameter. That decide material factor, electric power damage ratio, and coefficient of utilization for optimum function by method that search request output and optimum values of efficiency case by case and decided is proper that is saved after take magnetizing reactance relationship. This research result which it sees against a material expense with use coefficient of utilization which is included in loss expense decides the same plan variable back the place efficiency is useful and will be applied.