• Title/Summary/Keyword: Evaluation of Performance Parameter

Search Result 436, Processing Time 0.02 seconds

Performance Evaluation of Common Feedback Channels for Multicast Transmission and Optimization of System Parameters (멀티캐스트 전송을 위한 공용 피드백 채널의 성능 분석 및 파라미터 최적화 설계 방법)

  • Jung, Young-Ho;Kim, Byung-Gun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.5B
    • /
    • pp.489-497
    • /
    • 2009
  • In the 3GPP LTE and IEEE 802.16m standardizations for IMT-Advanced, the efficient transmission of multicast and broadcast data is one of the important issues to improve system performance. Especially, to guarantee each user's QoS in the multicast group, H-ARQ or adaptive modulation are considered to be adoption, however, reduction of feedback overhead is one of the most important issues. In this paper, performance of the previously proposed OOK (On-Off Keying) based common ACK/NACK feedback channel is analyzed through theoretical analysis and simulation. Based on the results, system parameter optimization methods for common feedback channel are proposed. In addition, through computer simulation, it is shown that the common feedback method according to the proposed feedback parameter optimization can feedback ACK/NACK information for multicast H-ARQ transmission, more reliably than the conventional user dedicated feedback method in 3GPP LTE systems, and can reduce the feedback overhead as well.

Behavior of Columns Due to Variation of Performance Influencing Factors Based on Performance Based Design (성능기반설계에 기초한 성능영향인자 변화에 따른 기둥의 거동분석)

  • Yun, Sung-Hwan;Choi, Min-Choul;Kang, Yoon-Sig;Park, Tae-Hyo
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.4
    • /
    • pp.489-498
    • /
    • 2010
  • The performance evaluation of reinforcement concrete structure is carried out as a function of the following performance influencing factors: (1) the strength of concrete, (2) longitudinal reinforcement, (3) transverse reinforcement, (4) aspect ratio, and (5) axial force. With various values of the five parameters, eigenvalue analysis and non-linear static analysis were performed to investigate the structural yield displacement, yield basis shear force, and static performance of ductility ratio. In addition, the performance evaluation is carried out according to the modified capacity spectrum method (FEMA-440) using the results of non-linear static analysis, and the effect of each parameter on performance point is analyzed. Based on the result of eigenvalue analysis and non-linear static analysis indicates, that the natural period and the ductility ratio are affected more by the structural properties than the material properties. In case of the analysis of the criterion of performance points, the effect of section shape is one of the important factors together with natural period and ductility ratio.

Influence of Charging Amounts on the Cooling Performance of $CO_2/Propane$ Mixtures and Concentration Shift Behavior (이산화탄소/프로판 혼합냉매의 냉방성능에 대한 충전량의 영향 및 순환성분비 변화 특성)

  • Kim, Ju-Hyok;Hwang, Yun-Wook;Kim, Min-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.11
    • /
    • pp.851-858
    • /
    • 2006
  • [ $CO_2$ ] and propane mixtures, which are environmentally benign, nontoxic, low in price, and compatible with materials and lubricants, were considered as promising alternative refrigerants. A fully instrumented air-conditioning system was developed for a precise performance evaluation of pure $CO_2$ and $CO_2/propane$ mixtures. In this paper, the effect of the charging amount and circulation concentration on the cooling performance of the system using $CO_2$ and propane mixtures was tested and discussed. Pure $CO_2$ and 85/15, 75/25 and 60/40 binary blends by the charged mass percentage of $CO_2/propane$ were selected as working fluids. An optimum charging amount was proposed as a parameter instead of the degree of subcooling, which can not be well defined in the transcritical cycle, to properly compare the performance between the transcritical and subcritical cycles.

Ground motion intensity measure to evaluate seismic performance of rocking foundation system

  • Ko, Kil-Wan;Ha, Jeong-Gon
    • Earthquakes and Structures
    • /
    • v.21 no.6
    • /
    • pp.563-576
    • /
    • 2021
  • The rocking foundation is effective for reducing structural seismic demand and avoiding overdesign of the foundation. It is crucial to evaluate the performance of rocking foundations because they cause plastic hinging in the soil. In this study, to derive optimized ground motion intensity measures (IMs) for rocking foundations, the efficiency of IMs correlated with engineering demand parameters (EDPs) was estimated through the coefficient determination using a physical modeling database for rocking shallow foundations. Foundation deformations, the structural horizontal drift ratio, and contribution in drift from foundation rotation and sliding were selected as crucial EDPs for the evaluation of rocking foundation systems. Among 15 different IMs, the peak ground velocity exhibited the most efficient parameters correlated with the EDPs, and it was discovered to be an efficient ground motion IM for predicting the seismic performance of rocking foundations. For vector regression, which uses two IMs to present the EDPs, the IMs indicating time features improved the efficiency of the regression curves, but the correlation was poor when these are used independently. Moreover, the ratio of the column-hinging base shear coefficient to the rocking base shear coefficient showed obvious trends for the accurate assessment of the seismic performance of rocking foundation-structure systems.

Robust seismic retrofit design framework for asymmetric soft-first story structures considering uncertainties

  • Assefa Jonathan Dereje;Jinkoo Kim
    • Structural Engineering and Mechanics
    • /
    • v.86 no.2
    • /
    • pp.249-260
    • /
    • 2023
  • The uncertainties involved in structural performances are of importance when the optimum number and property of seismic retrofit devices are determined. This paper proposes a seismic retrofit design framework for asymmetric soft-first-story buildings, considering uncertainties in the soil condition and seismic retrofit device. The effect of the uncertain parameters on the structural performance is used to find a robust and optimal seismic retrofit solution. The framework finds a robust and optimal seismic retrofit solution by finding the optimal locations and mechanical properties of the seismic retrofit device for different realizations of the uncertain parameters. The structural performance for each realization is computed to evaluate the effect of the uncertainty parameters on the seismic performance. The framework utilizes parallel processing to decrease the computationally intensive nonlinear dynamic analysis time. The framework returns a robust design solution that satisfies the given limit state for every realization of the uncertain parameters. The proposed framework is applied to the seismic retrofit design of a five-story asymmetric soft-first-story case study structure retrofitted with a viscoelastic damper. Robust optimal parameters for retrofitting a structure to satisfy the limit state for the different realizations of the uncertain parameter are found using the proposed framework. According to the performance evaluation results of the retrofitted structure, the developed framework is proved effective in the seismic retrofit of the asymmetric structure with inherent uncertainties.

Performance Analysis of Multimedia-Oriented Error Controll Mechanism over ATM Networks (ATM 상에서 멀티미디어 지향 오류 제어 기법의 성능 분석)

  • Choe, Won-Geun;An, Sun-Sin
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.26 no.7
    • /
    • pp.827-838
    • /
    • 1999
  • 멀티미디어 통신에서 통신 성능에 관련된 요구 사항들은 QoS 매개 변수들로서 서술된다. QoS매개 변수들에서 중요한 매개 변수 중의 하나가 전송 신뢰성이다. QoS 매개 변수로서의 신뢰성은 오류 감지, 보고 그리고 정정 기법으로 정의된다. 하지만 기존의 오류 제어 기법들은 멀티미디어 데이타의 통합된 관점을 고려하지 않았다. 그래서 우리는 MEC(multimedia-oriented error control)라고 명명된 오류 제어 기법을 제안하였다. 1 본 논문에서는 MEC기법의 성능을 조사 하였다. 성능평가 결과는 MEC기법이 기존의 오류 제어 기법보다도 낮은 전송지연(lower delay)과 호손율(blocking probability) 을 갖는다는 것을 볼 수 있었다. 결국 제안된 MEC기법은 수송 프로토콜에게 유연성과 높은 성능을 갖도록 해준다.Abstract Communication performance requirements are described as QoS parameters in multimedia communication. One of the important QoS parameters is the reliability of the transfer. As a QoS parameter, the reliability defines error detection, report and correction mechanisms. Conventional error control mechanisms, however, do not consider the integrated viewpoint of multimedia data. So we have proposed the MEC(multimedia-oriented error control). 1 In this paper, we have investigated the performance evaluation of the MEC. The results show that the MEC mechanism provides lower transfer delay and blocking probability than those of the conventional error recovery mechanism. Therefore, the proposed MEC mechanism makes the transport protocol have the flexibility and high performance.

Performance Analysis of MCR-DS/CDMA Systems Using a Simplified Expression for the Improved Gaussian Approximation (향상된 정규 근사법의 간략화된 표현을 이용한 MCR-DS/CDMA 시스템의 성능 분석)

  • 주민철;김귀훈;김형명
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.8B
    • /
    • pp.1357-1370
    • /
    • 2000
  • In this paper, we investigate the performance of asynchronous multiple-chip-rate (MCR)-DS/CDMA systems, where singles are transmitted at different chip rates, processing gains, and transmitted powers according to the required services and their own bit rates. A simplified expression for the improved Gaussian approximation (SEIGA), which is hewn for as a very accurate and simple tool for the performance evaluation, is applied to MCR systems, The correlations between chip waveforms and integrations are utilized instead of correlations between chip sequences which are used in conventional method [6] [7][8], and since this approach makes use of the system model parameter directly, we obtain more direct relationship among system parameters. Simulation results show that the performance of MCR-DS/CDMA systems can be evaluated more accurately by using the proposed procedure than by using the GA.

  • PDF

A new practical equivalent linear model for estimating seismic hysteretic energy demand of bilinear systems

  • Samimifar, Maryam;Massumi, Ali;Moghadam, Abdolreza S.
    • Structural Engineering and Mechanics
    • /
    • v.70 no.3
    • /
    • pp.289-301
    • /
    • 2019
  • Hysteretic energy is defined as energy dissipated through inelastic deformations during a ground motion by the system. It includes frequency content and duration of ground motion as two remarkable parameters, while these characteristics are not seen in displacement spectrum. Since maximum displacement individually cannot be the appropriate criterion for damage assessment, hysteretic energy has been evaluated in this research as a more comprehensive seismic demand parameter. An innovative methodology has been proposed to establish a new equivalent linear model to estimate hysteretic energy spectrum for bilinear SDOF models under two different sets of earthquake excitations. Error minimization has been defined in the space of equivalent linearization concept, which resulted in equivalent damping and equivalent period as representative parameters of the linear model. Nonlinear regression analysis was carried out for predicting these equivalent parameter as a function of ductility. The results also indicate differences between seismic demand characteristics of far-field and near-field ground motions, which are not identified by most of previous equations presented for predicting seismic energy. The main advantage of the proposed model is its independency on parameters related to earthquake and response characteristics, which has led to more efficiency as well as simplicity. The capability of providing a practical energy based seismic performance evaluation is another outstanding feature of the proposed model.

Performance Evaluation of Sliding Mode Control using the Exponential Reaching Law for a Magnetic Levitation System (자기부상 시스템을 위한 가속율도달법칙기반의 슬라이딩 모드 제어 성능 평가)

  • Moon, Seok Hwan;Lee, Ki Chang;Kim, Ji Won;Park, Byoung Gun;Lee, Min Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.4
    • /
    • pp.395-401
    • /
    • 2014
  • Magnetic levitation systems using the attraction force of electromagnets have many constraints according to the variation of air gap and the nonlinearity of electromagnetic force and inductances. As a result of these constraints, the nonlinear control of a magnetic levitation system has been improved by the latest advanced processors and accurate measurement system which can overcome problems such as many constraints and nonlinearity. This paper concentrates on the modeling of a nonlinear magnetic levitation system and an application of an exponential reaching law based sliding mode controller using the exponential reaching law which is one of the most robust controllers against external unexpected disturbances or parameter fluctuations. Controllability of a magnetic levitation system using the sliding mode control algorithm and robustness against parameter fluctuations have been verified through the experimental results.

Evaluation on Fatigue Characteristics of Tire Sidewall Rubber according to Aging Temperature

  • Jun, Namgyu;Moon, Byungwoo;Kim, Yongseok;Koo, Jae-Mean;Seok, Chang-Sung;Hong, Ui Seok;Oh, Min Kyeong;Kim, Seong Rae
    • Elastomers and Composites
    • /
    • v.52 no.3
    • /
    • pp.167-172
    • /
    • 2017
  • Ultra-high performance (UHP) tires, for which demand has recently surged, are subject to severe strain conditions due to the low aspect ratio of their sidewalls. It is important to ensure sidewall material durability, since a sudden tire sidewall breakage during vehicle operation is likely to cause a major accident. In the automotive application of rubber parts, cracking is defined as a failure because when cracks occur, the mechanical properties of rubber change. According to Mars, Andre et al., strain and strain energy density (SED) are mainly used as a failure parameters and the SED is generally used as a fatigue damage parameter. In this study, the fatigue life curves of sidewall rubber of tires were determined by using the SED as fatigue damage parameter while the effect of aging on fatigue life was evaluated after obtaining the SED-Nf curves according to aging condition.