• Title/Summary/Keyword: Evaluation Modeling

Search Result 2,089, Processing Time 0.035 seconds

Estimation Method of Resilience Pads Spring Stiffness for Sleeper Floating Tracks based on Track Vibration (궤도 진동기반의 침목플로팅궤도 침목방진패드 스프링강성 추정 기법 연구)

  • Jung-Youl Choi;Sang-Wook Park;Jee-Seung Chung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.1057-1063
    • /
    • 2023
  • The urban railway sleeper floating track, the subject of this study, is an anti-vibration track to reduce vibration transmitted to the structure. currently, the replacement cycle of resilience pad for sleeper floating tracks is set and operated based on load. however, most previous studies were conducted on load-based structural safety aspects, such as fatigue life evaluation of sleeper anti-vibration pads and increase in track impact coefficient and track support stiffness due to increase in spring stiffness. therefore, in this study, we measure the vibration acceleration of the ballast for each analysis section and use the results of 7 million fatigue tests to calculate the spring stiffness of the resilience pad for each section. the spring stiffness of the resilience pad calculated for each section was set as the analysis data and the concrete vibration acceleration was derived analytically. the adequacy of analysis modeling was verified as the analyzed concrete bed vibration acceleration for each section was within the field-measured concrete bed vibration acceleration range. using the vibration acceleration curve according to the derived spring stiffness change, the spring stiffness of the resilience pad is estimated from the measured vibration acceleration. therefore, we would like to present a technique that can estimate the spring stiffness of resilience pad of a running track using the vibration acceleration of the measured concrete bed.

Customer Voices in Telehealth: Constructing Positioning Maps from App Reviews (고객 리뷰를 통한 모바일 앱 서비스 포지셔닝 분석: 비대면 진료 앱을 중심으로)

  • Minjae Kim;Hong Joo Lee
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.4
    • /
    • pp.69-90
    • /
    • 2023
  • The purpose of this study is to evaluate the service attributes and consumer reactions of telemedicine apps in South Korea and visualize their differentiation by constructing positioning maps. We crawled 23,219 user reviews of 6 major telemedicine apps in Korea from the Google Play store. Topics were derived by BERTopic modeling, and sentiment scores for each topic were calculated through KoBERT sentiment analysis. As a result, five service characteristics in the application attribute category and three in the medical service category were derived. Based on this, a two-dimensional positioning map was constructed through principal component analysis. This study proposes an objective service evaluation method based on text mining, which has implications. In sum, this study combines empirical statistical methods and text mining techniques based on user review texts of telemedicine apps. It presents a system of service attribute elicitation, sentiment analysis, and product positioning. This can serve as an effective way to objectively diagnose the service quality and consumer responses of telemedicine applications.

Evaluation of Changes in Particle Size and Production of Sand and Cake Produced in Wet Aggregate Production Process (습식 골재 생산 공정에서 모래 및 케이크 발생량 평가)

  • Young-Wook Cheong;Jin-Young Lee;Sei-Sun Hong
    • Economic and Environmental Geology
    • /
    • v.57 no.2
    • /
    • pp.177-184
    • /
    • 2024
  • This study was conducted to find a way to reduce the production of cakes generated in the domestic aggregate production process. Cakes from 8 wet aggregate producers were collected and particle size was analyzed. Samples were collected step by step from an aggregate producer A, particle size analysis was performed, and the material balance was calculated before and after an sand recovery unit by modeling the production process. As a result of the particle size analysis of eight cakes, one sample contained 50% sand, and the rest contained about 5% to 25% sand. The results showing that the cake contained a variety of sand in cakes may indicate that the recovery efficiency of the sand recovery units in the field varied. Sieve analysis of the samples showed that the generation of sand particles increased 2.8 times during the third crushing compared to the second crushing, and more cake particles were generated. As a result of simulating the sand recovery unit model, the lower the cut point of the cyclone and dewatering screen, the higher the sand production and the less cake production appeared. In order to reduce the production of cake in the field, it was determined that an optimal operation of the sand recovery unit was necessary in the aggregate production process.

Reactive and Proactive Aggression, the Validation of the Reactive-Proactive Questionnaire (RPQ): Focusing on ESEM and Rasch (반응적 공격성과 주도적 공격성, Reactive-Proactive Questionnaire(RPQ) 타당화 연구: ESEM과 Rasch를 중심으로)

  • Seonyoung Park;Jonghan Sea
    • Korean Journal of Culture and Social Issue
    • /
    • v.30 no.2
    • /
    • pp.159-192
    • /
    • 2024
  • The purpose of this study is to validate the Reactive-Proactive Aggression Questionnaire (RPQ), a tool for measuring reactive-proactive aggression, in the context of South Korea. A thorough translation was conducted in collaboration with the original author. An exploratory factor analysis (EFA), exploratory structural equation modeling (ESEM), rating scale model (Rasch), differential item functioning (DIF), and convergent validity were performed on a sample of 510 South Korean individuals. The results revealed a two-factor structure of reactive and proactive aggression after removing one item showing dual loading. Rating scale analysis based on the Rasch model indicated the appropriateness of the 3-point Likert scale, with all items meeting fit criteria. Although the separation index and separation reliability of proactive aggression was marginally lower, the overall discrimination between participants and items was satisfactory. Examination of participant-item distribution indicated a suitable alignment between reactive aggression and participant ability levels, whereas proactive aggression exhibited slightly elevated item difficulty. Furthermore, three items were found to function differently based on gender. A moderate but statistically significant positive correlation was found between the Barratt Impulsiveness Scale-11-R (Korean version) and RPQ from the results of the convergent validity evaluation. Overall, this study employed rigorous statistical methods to validate the suitability of the RPQ for use in Korea, taking cultural nuances into account, and introduced the concepts of reactive and proactive aggression to the Korean general population.

Development of Elbow Joint X-ray Examination Aid for Medical Imaging Diagnosis (의료영상 진단을 위한 팔꿉관절 X-선 검사 보조기구 개발)

  • Hyeong-Gyun Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.2
    • /
    • pp.127-133
    • /
    • 2024
  • The elbow joint is made up of three different bones. X-rays or other radiological exams are commonly used to diagnose elbow injuries or disorders caused by physical activity and external forces. Previous research on the elbow joint reported a new examination method that meets the imaging evaluation criteria in the tilt position by Z-axis elevation of the forearm. Therefore, this study aims to design an optimized instrument and develop an aid applicable to other upper extremity exams. After completing the 2D drawing and 3D modeling design, the final design divided into four parts was fabricated with a 3D printer using ABS plastic and assembled. The developed examination aid consists of a four-stage Z-axis elevation tilt angle function (0°, 5°, 10°, and 15°) and can rotate and fixate 360° in 1-degree increments. It was designed to withstand a maximum equivalent stress of 56.107 Pa and a displacement of 1.6548e-5 mm through structural analysis to address loading issues caused by cumulative frequency of use and physical utilization. In addition to X-ray exams of the elbow joint, the developed aid can be used for shoulder function tests by rotating the humerus and also be applied to MRI and CT exams as it is made of non-metallic materials. It will contribute to the accuracy and efficiency of medical imaging diagnosis through clinical applications of various devices and medical imaging exams in the future.

Numerical study on evaluation of grout diffusion range by the conditions of steel pipe reinforced grouting method (강관보강그라우팅 주입 조건에 따른 그라우트 확산 범위 평가에 관한 수치해석적 연구)

  • Jun-Beom An;Gye-Chun Cho;Yuna Lee;Jaewon Lee;Kyeongnam Min;Gukje Jo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.4
    • /
    • pp.345-363
    • /
    • 2024
  • Steel pipe reinforced grouting method has been widely used to strengthen the crown of tunnel face and prevent groundwater leakage during tunnel excavation. Various injection procedures without sealing have recently been suggested to enhance efficiency. There are two representative injection methods. One is simultaneous injection in segmented batches, and the other is multiple injection using the external packer. The pros and cons of each method were discussed in terms of construction duration and equipment. However, it has yet to be discussed how the injection procedure affects the grout diffusion range in the ground. This study aims to evaluate the grout diffusion range quantitatively by considering the practical grouting sequences. The grout viscosity was measured by laboratory testing. Then, the numerical modeling was structured using the commercial computational fluid dynamics software. Finally, the grout diffusion range affected by the injection procedure and ground conditions was evaluated by performing the numerical parametric study. The results showed that the injection method highly affected the grout diffusion range, especially for inhomogeneous soil. Consequently, it is anticipated that the proper method of steel pipe reinforced grouting will be suggested.

Trends identification of species distribution modeling study in Korea using text-mining technique (텍스트마이닝을 활용한 종분포모형의 국내 연구 동향 파악)

  • Dong-Joo Kim;Yong Sung Kwon;Na-Yeon Han;Do-Hun Lee
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.4
    • /
    • pp.413-426
    • /
    • 2023
  • Species distribution model (SDM) is used to preserve biodiversity and climate change impact. To evaluate biodiversity, various studies are being conducted to utilize and apply SDM. However, there is insufficient research to provide useful information by identifying the current status and recent trends of SDM research and discussing implications for future research. This study analyzed the trends and flow of academic papers, in the use of SDM, published in academic journals in South Korea and provides basic information that can be used for related research in the future. The current state and trends of SDM research were presented using philological methods and text-mining. The papers on SDM have been published 148 times between 1998 and 2023 with 115 (77.7%) papers published since 2015. MaxEnt model was the most widely used, and plant was the main target species. Most of the publications were related to species distribution and evaluation, and climate change. In text mining, the term 'Climate change' emerged as the most frequent keyword and most studies seem to consider biodiversity changes caused by climate change as a topic. In the future, the use of SDM requires several considerations such as selecting the models that are most suitable for various conditions, ensemble models, development of quantitative input variables, and improving the collection system of field survey data. Promoting these methods could help SDM serve as valuable scientific tools for addressing national policy issues like biodiversity conservation and climate change.

Analysis of the Relationship between Melon Fruit Growth and Net Quality Using Computer Vision and Fruit Modeling (컴퓨터 비전과 과실 모델링을 이용한 멜론 과실 생장과 네트 품질의 관계 분석)

  • Seungri Yoon;Minju Shin;Jin Hyun Kim;Ji Wong Bang;Ho Jeong Jeong;Tae In Ahn
    • Journal of Bio-Environment Control
    • /
    • v.32 no.4
    • /
    • pp.456-465
    • /
    • 2023
  • Melon fruits exhibit a wide range of morphological variations in fruit shape, sugar content, net quality, diameter and weight, which are largely dependent on the variety. These characteristics significantly affect marketability. For netted varieties, the uniformity and pattern of the net serve as key factors in determining the external quality of the melon and act as indicators of its internal quality. In this study, we evaluated the effect of fruit morphology and growth on netting by analyzing the changes in melon fruit quality under LED light treatment and monitoring fruit growth. Computer vision analysis was used for quantitative evaluation of fruit net quality, and a three-variable logistic model was applied to simulate fruit growth. The results showed that melons grown under LED conditions exhibited more uniform fruit shape and improvements in both net quality and sugar content compared to the control group. The results of the logistic model showed minimal error values and consistent curve slopes across treatments, confirming its ability to accurately predict fruit growth patterns under varying light conditions. This study provides an understanding of the effects of fruit shape and growth on net quality.

Verification of Gated Radiation Therapy: Dosimetric Impact of Residual Motion (여닫이형 방사선 치료의 검증: 잔여 움직임의 선량적 영향)

  • Yeo, Inhwan;Jung, Jae Won
    • Progress in Medical Physics
    • /
    • v.25 no.3
    • /
    • pp.128-138
    • /
    • 2014
  • In gated radiation therapy (gRT), due to residual motion, beam delivery is intended to irradiate not only the true extent of disease, but also neighboring normal tissues. It is desired that the delivery covers the true extent (i.e. clinical target volume or CTV) as a minimum, although target moves under dose delivery. The objectives of our study are to validate if the intended dose is surely delivered to the true target in gRT and to quantitatively understand the trend of dose delivery on it and neighboring normal tissues when gating window (GW), motion amplitude (MA), and CTV size changes. To fulfill the objectives, experimental and computational studies have been designed and performed. A custom-made phantom with rectangle- and pyramid-shaped targets (CTVs) on a moving platform was scanned for four-dimensional imaging. Various GWs were selected and image integration was performed to generate targets (internal target volume or ITV) for planning that included the CTVs and internal margins (IM). The planning was done conventionally for the rectangle target and IMRT optimization was done for the pyramid target. Dose evaluation was then performed on a diode array aligned perpendicularly to the gated beams through measurements and computational modeling of dose delivery under motion. This study has quantitatively demonstrated and analytically interpreted the impact of residual motion including penumbral broadening for both targets, perturbed but secured dose coverage on the CTV, and significant doses delivered in the neighboring normal tissues. Dose volume histogram analyses also demonstrated and interpreted the trend of dose coverage: for ITV, it increased as GW or MA decreased or CTV size increased; for IM, it increased as GW or MA decreased; for the neighboring normal tissue, opposite trend to that of IM was observed. This study has provided a clear understanding on the impact of the residual motion and proved that if breathing is reproducible gRT is secure despite discontinuous delivery and target motion. The procedures and computational model can be used for commissioning, routine quality assurance, and patient-specific validation of gRT. More work needs to be done for patient-specific dose reconstruction on CT images.

Modeling of Sensorineural Hearing Loss for the Evaluation of Digital Hearing Aid Algorithms (디지털 보청기 알고리즘 평가를 위한 감음신경성 난청의 모델링)

  • 김동욱;박영철
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.1
    • /
    • pp.59-68
    • /
    • 1998
  • Digital hearing aids offer many advantages over conventional analog hearing aids. With the advent of high speed digital signal processing chips, new digital techniques have been introduced to digital hearing aids. In addition, the evaluation of new ideas in hearing aids is necessarily accompanied by intensive subject-based clinical tests which requires much time and cost. In this paper, we present an objective method to evaluate and predict the performance of hearing aid systems without the help of such subject-based tests. In the hearing impairment simulation(HIS) algorithm, a sensorineural hearing impairment medel is established from auditory test data of the impaired subject being simulated. Also, the nonlinear behavior of the loudness recruitment is defined using hearing loss functions generated from the measurements. To transform the natural input sound into the impaired one, a frequency sampling filter is designed. The filter is continuously refreshed with the level-dependent frequency response function provided by the impairment model. To assess the performance, the HIS algorithm was implemented in real-time using a floating-point DSP. Signals processed with the real-time system were presented to normal subjects and their auditory data modified by the system was measured. The sensorineural hearing impairment was simulated and tested. The threshold of hearing and the speech discrimination tests exhibited the efficiency of the system in its use for the hearing impairment simulation. Using the HIS system we evaluated three typical hearing aid algorithms.

  • PDF