• Title/Summary/Keyword: Evacuation exit

Search Result 88, Processing Time 0.025 seconds

The Study on Fire Phenomena in The Deeply Underground Subway Station (대심도 지하역사에서의 화재현상 연구)

  • Jang, Yong-Jun;Kim, Hag-Beom;Lee, Chang-Hyun;Jung, Woo-Sung
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1773-1780
    • /
    • 2008
  • When the fire occur in the deeply underground subway station, the difficulties of passenger evacuation are expected because of many stairs to the exit. In this study, SOONGSIL-University station (7 line, 47m depth) is the one of the deepest subway stations of the each line in the Seoul metro. The numerical computational-simulation was performed for the fire driven flow in the subway station. Hot and smoke flow was analyzed from the simulation results. The proper plan of evacuation against fire was considered through the results. The fire driven flow was simulated using FDS code in which LES method was applied. The Heat Release Rate was 10MW and the ultrafast model was applied for the growing model of the fire source. The proper mesh size was determined from the characteristic length of fire size. The parallel computational method was employed to compute the flow and heat eqn's in the meshes, which are about 10,000,000, with 6cpu of the linux clustering machine.

  • PDF

The Research of the Analysis of Movement from a Fire using RTLS System (RTLS 시스템을 활용한 화재시 행동분석 연구)

  • Lim, Kyung-Bum;Kim, Ha-Young;Rie, Dong-Ho
    • Fire Science and Engineering
    • /
    • v.24 no.4
    • /
    • pp.98-103
    • /
    • 2010
  • The design disaster prevention of first consideration is security for the people in the buildings. However, it is difficult to make a project for considering variable cases, declined visibility of smoke, distance from another person, mentality, knowledge of clearway etc. This study purpose is, analysis variable cases and modularization of pattern movement to practice basic information for evacuation of simulation which is used RTLS (Real Time Location System) system. It is useful to sense the electric waves from the Tag and grasp the real-time position. The pattern movement of evacuation were analyzed prescription eyeglasses which is used RTLS system to consider following 3 actions; analysis of relations that declined visibility effect the decline of movement velocity, analysis rate of flow with the size of door to estimate the optimum size of door in building and analysis the pattern movement that a bottleneck situation with abundant of people passed together to these exit. The confirmed of propriety of the interpretation about the actual people to evacuate is expected applying the numerical formula in various situation.

Intelligent evacuation systems for accidents aboard a ship (선박 재난 환경을 고려한 지능형 대피유도 시스템)

  • Kang, Moo-Bin;Joo, Yang-Ick
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.9
    • /
    • pp.824-829
    • /
    • 2016
  • Passenger casualties in the case of ship accidents have increased because of the increase in size and complexity of current ships (such as cruise ships). Therefore, in recent years, emergency evacuation systems are receiving increased interest so as to ensure the safety of passengers. Currently, there are only basic instructions provided, such as announcements regarding the situation, alarms, and exit signs; however, no guidance toward a proper escape route has yet been provided. To solve this problem, several emergency guiding schemes have been proposed. However, these systems ignore some of the realities of ship accidents and are impractical because various risk factors are not considered. Therefore, this paper proposes an optimal route guiding system based on an $A^*$ algorithm for emergency escape during disaster situations. This system takes into account various possible risk factors. Performance evaluation using computer simulations showed that the proposed scheme is effective and leads to safe escape routes.

A Model-Analysis for Removal of Fire Fumes in a Road Tunnel during a Fire Disaster (도로터널내 화재 발생시 매연 제거를 위한 모델 해석)

  • 윤성욱;이희근
    • Tunnel and Underground Space
    • /
    • v.7 no.2
    • /
    • pp.100-107
    • /
    • 1997
  • In case of a fire outbreak in a uni-directional road tunnel, the flow of traffic immediately behind the fire disaster will be stalled all the way back to the entrance of the tunnel. Furthermore, when the vehicle passengers try to flee away from the fire toward the entrance of the tunnel, the extremely hot fume that propagates in the same direction will be fatal to the multitudes evacuating, but may also cause damage to the ventilation equipments and the vehicles, compounding the evacuation process. This paper will present the 3-dimensional modelling analysis of the preventive measures of such a fume propagation in the same direction as the evacuating passengers. For the analysis, the fire hazard was assumed to be a perfect combustion of methane gas injected through the 1 m X 2 m nozzle in the middle of the tunnel, and the product of $CO_2$ as the indicator of the fume propagation. From the research results, when the fire hazard occurred in middle of the 400 m road tunnel, the air density decreased around the fire point, and the maximum temperatures were 996 K and 499 K at 210 m and 350 m locations, respectively, 60 seconds after fire disaster occurred, when the fumes were driven out only towards the exit-direction of the tunnel. By tracing the increase of $CO_2$ level over 1% mole fraction, the minimum longitudinal ventilation velocity was found to be 2.40 m/sec. Furthermore, through Analysis of the temperature distribution graphs, and observation of the cross-sectional distribution of $CO_2$ over 1% mole fraction, it was found that the fume did not mix with the air, but rather moved far in a laminar flow towards exit of the tunnel.

  • PDF

Primary Fire Behavior of Compounded Multiplex Theater with Various Fire Conditions (조합형 복합상영관에서의 화재조건에 따른 초기화재 거동해석)

  • Park, Yong-Hwan
    • Fire Science and Engineering
    • /
    • v.21 no.1 s.65
    • /
    • pp.1-6
    • /
    • 2007
  • This paper investigated the fire and smoke behavior in the compounded multiplex theater using FDS with various spacial and boundary conditions to ensure the fire safety of the multiplex. The results showed that more rapid temperature increase and smoke can be induced near the exit door for the lower fire load duo to the horizontal smoke movement. The overuse of fire resistants can generate more smoke while delaying combustion rate, which can give adverse effect to the evacuation. The mal-function of the exhaust fan would obstruct smoke exhaust but also retard the function of sprinkler head.

Syntax-based Accessibility Analysis Algorithm for Indoor Spaces (실내공간을 위한 기반 Syntax 접근성 분석 알고리즘)

  • Kim, Hye-Yeong;Jeon, Cheol-Min
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2007.10a
    • /
    • pp.247-256
    • /
    • 2007
  • Accessibility is a field of study that has primarily been applied to urban or transportation problems two dimensionally. However, in large complex buildings as shopping centers or hospitals, inter-spatial accessibility among compartments has to be taken into account such as in building layouts or evacuation planning. This study expands space syntax theory, one of accessibility-related methodologies used for computing connectivity in urban or architectural spaces, into 3D indoor spaces. Although space syntax is basically a topology-based theory that does not consider general costs such as distance or time, this study suggests modification that incorporates different types of impedances in moving between places including distances, turns and transfers between floors. The proposed method is applied to a 3D campus building model in computing and displaying the accessibility to exit doors or cohesive accessibility among similar functions.

  • PDF

A study of Heat & Smoke Extraction Effects by the Various Operation of funnel Fan Shaft Ventilation (터널팬 샤프트 환기 방식에 따른 열 및 연기배출효과에 관한 연구)

  • Rie, Dong-Ho;Yoo, Ji-Oh
    • Fire Science and Engineering
    • /
    • v.18 no.2
    • /
    • pp.49-56
    • /
    • 2004
  • Today's popular ventilation systems include the combined jet fans and electrostatic precipitation systems or the combined jet fans and vertical shaft system. Tunnels with these two ventilation systems applied have been designed and opened, more and more interest has been put in maintenance of a tunnel after opening. Therefore. it is to become more important to come up with the optimal operation mode and the method for the evaluation of ventilation system. In this study, to evaluate a tunnel ventilation and its economy, a dynamic simulation program was developed which can simulate the unsteady-state tunnel air velocity and concentration of pollutants according to the traffic flow variations and operation condition of a ventilation system. We clarified the effectiveness usage on tunnel ventilation by using it and also we could found the most economical ventilation operation mode by application in real exit tunnel. We obtained that combination of fan system and electrostatic precipitation system was more economical than jet fan priority operation mode.

A study on the smoke control performance of the damper exhaust system at FCEV fire in tunnel for small vehicles (소형차 전용터널 내 수소연료전지차 화재시 집중배기방식의 제연성능에 관한 연구)

  • Hong, Seo-Hee;Baek, Doo-San
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.745-756
    • /
    • 2022
  • The road tunnel is a semi-closed space that is blocked on all sides except the entrance and exit, and in the event of a fire, the smoke of the fire spreads longitudinally due to heat buoyancy caused by the fire and air currents that always exist in the tunnel. To solve this problem, smoke removal facilities are installed in road tunnels to secure a safe evacuation environment by controlling the direction of movement of smoke or directly smoking at fire points. In urban areas, the service level of urban roads decreases due to the increase in traffic due to the increase in population, and as a solution, the construction of underground roads in urban areas is increasing. When a fire occurs during hydrogen leakage through TPRD of a hydrogen fuel cell vehicle (FCEV), the fire intensity depends on the amount of leakage, and the maximum fire intensity depends on the orifice diameter of the TPRD. Considering the TPRD orifice diameter of 1.8 mm, this study analyzed the diffusion distance of fire smoke according to the wind speed of the roadway and the opening interval of the large exhaust port when the maximum fire intensity was 15 MW. As a result, it was analyzed that air flow in the tunnel could be controlled if the wind speed of the road in the tunnel was less than 1.25 m/s, and smoke could be controlled within 200 m from the fire if the damper interval was 50 m and 100 m.