• Title/Summary/Keyword: Evacuation Life

Search Result 155, Processing Time 0.028 seconds

A Study on the Calculation of Evacuation Capacity for the Development of Korean Life Safety Standards for Medical facilities (의료시설의 한국형 인명안전기준개발을 위한 피난용량 산정에 관한 연구)

  • Choi, Yun-Ju;Kim, Yun-Seong;Jin, Seung-Hyeon;Kwon, Young-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.92-93
    • /
    • 2021
  • In the case of medical facilities, the evacuation time is delayed due to the decrease in the number of people in the hallway and exits due to the increase in the width of evacuation by using mobile beds, wheelchairs, crutches, etc. Accordingly, it is considered to secure evacuation capacity to reduce evacuation time according to corridor width and exit width. Accordingly, we would like to compare the standards related to the evacuation capacity of medical facilities in Korea and NFPA, derive differences, and use evacuation simulations to compare evacuation times according to changes in corridor width and exit width. In Korea, it is calculated based on the floor area by use, but in the case of NFPA 101, the number of evacuation routes, stair width, corridor exit width, and two-way door width was stipulated depending on the number of people. Using evacuation simulation, efficient evacuation capacity is calculated according to the reduction of evacuation time by changing the width of the hallway, changing the width of the exit, the width of the corridor, and the width of the exit. The evacuation simulation is intended to be used to secure evacuation safety of domestic medical facilities by calculating the effective evacuation time reduction by changing the width of the hallway and exit.

  • PDF

An Investigation Study on the Evacuation Capacity Computation for the Development of Korea Life Safety Code (한국형 인명안전기준 개발을 위한 피난용량 산정에 관한 연구)

  • Koo, In-Hyuk;Kim, Hye-Won;Jin, Seung-Hyeon;Lee, Byeong-Heun;Kwon, Young-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.65-66
    • /
    • 2020
  • When evacuation safety Design of buildings, the calculation of evacuation capacity is the most important factor that it directly impact of evacuation safety performance. However domestic standards is not consider about occupant characteristics. also the case of domestic, it has the problem that the law is partially applied when the fire safety design of buildings. Therefore, in this study we anlayze the evacuation capacity standards of each countries as basic study for development the Korean Life Safety Standards

  • PDF

The Applicability Analysis of Life Safety Codes for High Fire Risk Building Applications (화재 위험성을 중심으로 한 건축물 용도별 한국형인명안전기준의 적용성 검토에 관한 연구)

  • Koo, In-hyuk;Kim, Hye-Won;Jin, Seung-Hyeon;Lee, Byeong-Heun;Kwon, Young-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.103-104
    • /
    • 2022
  • In Korea, the occurrence and risk of similar fires are high, so setting up fire prevention measures through fire case investigation is considered the most basic measure in securing human safety. In particular, calculation of evacuation capacity in evacuation safety design of buildings is the most important factor that directly affects evacuation safety performance. However domestic standards is not consider about occupant characteristics. also the case of domestic, it has the problem that the law is partially applied when the fire safety design of buildings. Therefore, the purpose of this study is to study the current status and related regulations of the life safety code for the application of high fire risk buildings, and to analyze the difference in evacuation time through Case Study.

  • PDF

A Study on the Evacuation of People used the evacuation model on Fire in Shopping Mall (피난 모델을 이용한 대형할인매장의 화재시 피난에 관한 연구)

  • 이수경;이상준
    • Fire Science and Engineering
    • /
    • v.14 no.4
    • /
    • pp.17-22
    • /
    • 2000
  • For life safety design of shopping mall, we selected a shopping mall, and calculated the evacuation time of means of egress. It is calculated by two kind of evacuation method. One is the computer simulation model, EXODUS. The other is Japan's method. Study way is a model structure study, selecting real shopping mall and setting scenario, calculating the evacuating time. result of study, evaluation time is very high. Therefore we confirmed that the building of means of egress is not fit to evacuation more the capacity of setting population.

  • PDF

Development of the Personal Disaster Evacuation Apparatus in Case of the Life Damage by the landslide (I) - Focusing on the Load Weight and Material Test - (산사태로 인한 인명피해 대비 개인용 재난대피기구 개발 (I) - 재하하중 및 재료시험 중심으로 -)

  • Kim, Jung Meyon;Hwang, Dea Won;Park, Sung Yong;Lim, Chang Su;Yeon, Kyu Seok;Kim, Yong Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.5
    • /
    • pp.39-47
    • /
    • 2016
  • The houses are formed in the lower part of the mountain slope face in most agricultural areas of Korea, and old residents accounting for a large portion of the agricultural populations cannot respond to the evacuation quickly when the landslide happens, and the possibility the life damage occurs is high. Therefore, it is urgent to arrange the measure on this. This study is intended to develop the personal disaster evacuation apparatus that can be installed in the house to minimize the life damage by the landslide and to develop the self-initiative evacuation apparatus. This study suggested the load applicable to the personal disaster evacuation apparatus by quantitatively analyzing the effect of the load of rockslides and avalanches caused by the landslide on the structure. Also, the material property of materials was calculated through the tension and bending intensity test after making the specimen of glass fiber reinforced plastic (GFRP) member. The load weight and material property drawn from this study can be used as the basic material for the stability analysis of the personal disaster evacuation apparatus.

Plans to Improve Safety Experience Education through the Experimental Analysis of Evacuation Equipment (피난기구 사용시간 실험분석을 통한 안전체험교육 개선방안)

  • Lee, Jeong Il;Lee, Sung Eun
    • Fire Science and Engineering
    • /
    • v.33 no.6
    • /
    • pp.35-42
    • /
    • 2019
  • The aim of this study is to investigate the direction of improvement of safety experience education through the analysis of the evacuation time experiment. For the study, test subjects were divided into groups of similar body size and weight. The test subjects were directly experienced four evacuation devices, and the experience time was measured. As a result of the analysis of the total time from the installation of the evacuation device to the escape, the time was measured in the order of Descending Life Line-Tilt-Down Rescue Line-Vertical Escape Chute-air safety mat. In the case of evaluating the evacuation time using evacuation mechanisms, the evacuation time was measured in the order of air safety mat-Tilt-Tilt-Down Rescue Line-Descending Life Line-Vertical Escape Chute. In the first and second experiments of the Descending Life Line, time differences were observed. The escape time using the Descending Life Line was reduced in the second experiment than in the first experiment. As shown in this result, education through experience has shown that behavioral confidence and time can be managed. The conclusion of this study is that the goal of safety education is to minimize human life and property damage. Therefore, in order to bring this effect to more people, it is necessary to make efforts to keep self-safe through experiential education.

A Numerical Study on the Effects of the Smoke Exhaustion on Safe Evacuation in Emergency Situations during Fires on Ships

  • Kim, Won-Ouk
    • Journal of Navigation and Port Research
    • /
    • v.37 no.1
    • /
    • pp.85-89
    • /
    • 2013
  • Sometimes, an evacuation should be executed from a ship for many reasons. This study considers on emergency evacuation on fire in a ship, one of the many reasons for evacuation. Due to the characteristic of fire, the most loss of life is known to be caused by suffocation resulted by smoke. To reduce the suffocation by smoke, the time available for evacuation should be improved for the higher survival rate of crews. In this study, crews' survival times and Evacuation time are analyzed quantitatively in during fire in the same sealed space in two different cases of the natural ventilation and the forced ventilation.

A Study for Evacuation Assistance to Vulnerable People by MAS Based Evacuation Simulation (MAS 기반 대피시뮬레이션을 활용한 안전약자 대피지원 개선방안 연구)

  • Jung, Tae Ho;Park, Sang Hyun;Jang, Jae Soon
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.1
    • /
    • pp.121-127
    • /
    • 2017
  • Recently, many patients in a hospital are threatened life by fire disaster. Because many patients like vulnerable people have more evacuation problem than ordinary person. So a patient who can escape by oneself with walking assistance device like crutches or wheelchair and another patient who can't escape by oneself are should be supported safety technologies and service. Earlier research of 'hospital evacuation' led by actual experiments or computer evacuation simulation. Actual experiment is effective to gain credibility of result but it is difficult for patients to experiment repeatedly and it requires consideration for spatial problem and economic problems. Although computer evacuation simulation have been used to solve these problems, almost have concluded only results based on velocity without evacuation device. In this study, evacuation results with support device application or not are analysed used by computer evacuation simulation based on MAS(Multi Agent System). As a result, it is drawn through proof of efficiency of evacuation device in the vertical space like stairs that can improve the evacuation plan for vulnerable people in the hospital.

A study on the Means of Egress Codes for Interior Architecture in the United States - Focused on Evacuation Elements in the Interior Architectural Design - (미국의 실내건축 피난 규정에 관한 연구 - 실내건축계획에 있어 피난 요소를 중심으로 -)

  • Kim, Young-Sung;Cho, Sung-O
    • Korean Institute of Interior Design Journal
    • /
    • v.27 no.3
    • /
    • pp.24-32
    • /
    • 2018
  • The law reflects the situation of the times, understands the society, and shows the will of the state and the community. The Means of Egress should be maintained from design to construction, supervision, as well as use, in order to protect the lives and property of the residents as well as the safe use of the facilities. However, Interior Architects are think that evacuation and safety regulations are complex elements that change frequently and may inhibit the idea of design. The purpose of this study is to propose a design method for the use of safe facilities in the interior architectural design on the evacuation regulations affecting the actual design by the IBC(the International Building Code) and NFPA(National Fire Protection Association) LSC (Life Safety Code). The research method is to investigate and analyze the provisions related to the evacuation of interior architecture in the US and to understand the current regulations and the evacuation regulations. We suggest to design method to the details of the hallway, corridors, aisle accessway, door way, exit path, In particular, the design of furniture, tables and chairs layout that could be obstacles to evacuation situations is presented.

A Study on Evacuation Safety of Trainingship HANBADA using FDS & maritimeEXODUS

  • KIM, Won-Ouk;HAN, Ki-Young;KIM, Dae-Hee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.3
    • /
    • pp.266-272
    • /
    • 2017
  • In this study, it was simulated and analyzed the evacuation safety to identify the cadets' evacuation time by using maritimeEXODUS which is applied IMO MSC.1/Circ.1238 theory as well as the trim and heel which are the major factor of reducing the ship evacuation speed. In addition, this study carried out a simulation through the special program for fire analysis - FDS (Fire Dynamics Simulator) in order to find the effective evacuation time, i.e. life survival time. Particularly, this study did comparative analysis of the influence on the survival of cadets based on the collected simulation data by fire size and sort. As a result of the analysis, It was analyzed the Evacuation Allowable Limit Temperature $60^{\circ}C$ and resulted that there is no influence in evacuation by temperature. As a result of the analysis on visibility evacuation limit 5 m, it was found that the only one evacuation rallying point could not meet the evacuation safety. However, it derived the perfect evacuation safety under the condition of two rallying points available on wood fire. In case of Kerosene, it was satisfied the evacuation safety if the heeling was under $10^{\circ}$. Moreover, it could not meet the evacuation safety by evacuating through upper deck although there were two evacuation rallying points. When it was set by the lifeboat descending maximum angle-$20^{\circ}heel$ and $10^{\circ}trim$ which was described in SOLAS regulation, it was simulated that the wood fire having two evacuation rallying points in the center of the ship satisfied the evacuation safety.