• Title/Summary/Keyword: Evacuation Flow

Search Result 124, Processing Time 0.028 seconds

A comparative study of risk according to smoke control flow rate and methods in case of train fire at subway platform (지하철 승강장에서 열차 화재 시 제연풍량 및 방식에 따른 위험도 비교 연구)

  • Ryu, Ji-Oh;Lee, Hu-Yeong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.4
    • /
    • pp.327-339
    • /
    • 2022
  • The purpose of this study is to present the effective smoke control flow rate and mode for securing safety through quantitative risk assessment according to the smoke control flow rate and mode (supply or exhaust) of the platform when a train fire occurs at the subway platform. To this end, a fire outbreak scenario was created using a side platform with a central staircase as a model and fire analysis was performed for each scenario to compare and analyze fire propagation characteristics and ASET, evacuation analysis was performed to predict the number of deaths. In addition, a fire accident rate (F)/number of deaths (N) diagram (F/N diagram) was prepared for each scenario to compare and evaluate the risk according to the smoke control flow rate and mode. In the ASET analysis of harmful factors, carbon monoxide, temperature, and visible distance determined by performance-oriented design methods and standards for firefighting facilities, the effect of visible distance is the largest, In the case where the delay in entering the platform of the fire train was not taken into account, the ASET was analyzed to be about 800 seconds when the air flow rate was 4 × 833 m3/min. The estimated number of deaths varies greatly depending on the location of the vehicle of fire train, In the case of a fire occurring in a vehicle adjacent to the stairs, it is shown that the increase is up to three times that of the vehicle in the lead. In addition, when the smoke control flow rate increases, the number of fatalities decreases, and the reduction rate of the air supply method rather than the exhaust method increases. When the supply flow rate is 4 × 833 m3/min, the expected number of deaths is reduced to 13% compared to the case where ventilation is not performed. As a result of the risk assessment, it is found that the current social risk assessment criteria are satisfied when smoke control is performed, and the number of deaths is the flow rate 4 × 833 m3/min when smoke control is performed at 29.9 people in 10,000 year, It was analyzed that it decreased to 4.36 people.

Characteristics of Thermal and Fluid Flows for Different Fire Locations in Underground Combined Cycle Power Plant (화원 위치에 따른 지하 복합 발전 플랜트 내 열유동 특성 연구)

  • Sung, Kun Hyuk;Bang, Joo Won;Lee, Soyeong;Ryou, Hong Sun;Lee, Seong Hyuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.716-722
    • /
    • 2017
  • The present study numerically investigates the effect of obstacles located in the trajectory of fire plume flow on heat flow characteristics by using Fire Dynamics Simulation (FDS) software in an underground combined cycle power plant (CCPP). Fire size is taken as 10 MW and two different locations of fire source are selected depending on the presence of an obstacle. As the results, when the obstacle is in the trajectory of fire plume, hot plume arrives at the ceiling about 5 times slower in the upper of the fire in comparison to the results without obstacle. In addition, the average propagation time of ceiling jet increases by about 70 % with the distance from the ceiling in the upper of the fire, and it increases mainly about 4 times at the distance of 10 m. Consequently, it is noted that the analysis of heat flow characteristics in the underground CCPP considering fire scenarios is essential to develop the fire detection system for initial response on evacuation and disaster management.

Computer modelling of fire consequences on road critical infrastructure - tunnels

  • Pribyl, Pavel;Pribyl, Ondrej;Michek, Jan
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.3
    • /
    • pp.363-377
    • /
    • 2018
  • The proper functioning of critical points on transport infrastructure is decisive for the entire network. Tunnels and bridges certainly belong to the critical points of the surface transport network, both road and rail. Risk management should be a holistic and dynamic process throughout the entire life cycle. However, the level of risk is usually determined only during the design stage mainly due to the fact that it is a time-consuming and costly process. This paper presents a simplified quantitative risk analysis method that can be used any time during the decades of a tunnel's lifetime and can estimate the changing risks on a continuous basis and thus uncover hidden safety threats. The presented method is a decision support system for tunnel managers designed to preserve or even increase tunnel safety. The CAPITA method is a deterministic scenario-oriented risk analysis approach for assessment of mortality risks in road tunnels in case of the most dangerous situation - a fire. It is implemented through an advanced risk analysis CAPITA SW. Both, the method as well as the resulting software were developed by the authors' team. Unlike existing analyzes requiring specialized microsimulation tools for traffic flow, smoke propagation and evacuation modeling, the CAPITA contains comprehensive database with the results of thousands of simulations performed in advance for various combinations of variables. This approach significantly simplifies the overall complexity and thus enhances the usability of the resulting risk analysis. Additionally, it provides the decision makers with holistic view by providing not only on the expected risk but also on the risk's sensitivity to different variables. This allows the tunnel manager or another decision maker to estimate the primary change of risk whenever traffic conditions in the tunnel change and to see the dependencies to particular input variables.

A Study of Smoke Movement in a Short Tunnel (짧은 터널 내의 연기거동에 관한 연구)

  • Kim, Sung-Chan;Ryou, Hong-Sun;Kim, Chung-Ik;Hong, Ki-Bae
    • Tunnel and Underground Space
    • /
    • v.12 no.1
    • /
    • pp.31-36
    • /
    • 2002
  • This paper concerns smoke propagation in tunnel fires with various size of fire source. Experiments carried out in model tunnel and those results were compared with numerical results. The Froude scaling law was used to scale model tests for comparison with larger scale tests. In order to validate for numerical analysis, temperature distribution of predicted data was compared with measured data. Examining the temperature distribution, we found that smoke layer does not come down under 50% of tunnel heights for a short tunnel heights for a short tunnel firs without ventilation. Front velocity of smoke layer is proportional to the cube root of heat release rate. And it is in good agreement with existing empirical expression and numerical prediction. In a short tunnel fire, horizontal propagation of smoke layer is more important than vertical smoke movement for evacuation plan.

A Study on Design Improvement for Smoke-Control System Using the Pressurization of the Elevator Shaft (승강로 가압 제연설비의 설계개선에 관한 연구)

  • Kim, Il-Young;Kim, Kyung-Jin;Hong, Ji-Hwan;Kwon, Chang-Hee;Yoo, Chul-Kwon
    • Fire Science and Engineering
    • /
    • v.33 no.3
    • /
    • pp.74-83
    • /
    • 2019
  • In the U.S., the pressurization of elevator shaft was developed in 1972 to allow vulnerable people, such as the elderly and weak who could not use escape stairs in case of fire, to evacuate. It is an advantage in terms of space saving by not using vertical ducts. This study drew the problem of the pressurization of elevator shaft based on the existing domestic patents and proposed improvements. The smoke control volume calculation method is proposed by using vertical modeling. Leakage gaps in elevator doors need to be reviewed through experimental data or actual data. The evacuation floor was divided, the openings in the elevator machine room were automatically closed to the fire signal and the relief damper was installed to improve the performance. The improved method functions as the smoke control damper supplying the air flow rather than maintaining the differential pressure. To increase reliability of the research results, the procedure was performed to verify by using Contam.

Effect of Moisture in a Vacuum Chamber on the Deposition of c-BN Thin Film using an Unbalanced Magnetron Sputtering Method (비대칭 마그네트론 스퍼터링 방법에 의한 질화붕소막의 증착시 반응실내의 초기 수분이 입방정질화붕소 박막의 형성에 미치는 영향)

  • Lee, Eun-Sook;Park, Jong-Keuk;Lee, Wook-Seong;Seong, Tae-Yeon;Baik, Young-Joon
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.620-624
    • /
    • 2012
  • The role of moisture remaining inside the deposition chamber during the formation of the cubic boron nitride (c-BN) phase in BN film was investigated. BN films were deposited by an unbalanced magnetron sputtering (UBM) method. Single-crystal (001) Si wafers were used as substrates. A hexagonal boron nitride (h-BN) target was used as a sputter target which was connected to a 13.56 MHz radiofrequency electric power source at 400 W. The substrate was biased at -60 V using a 200 kHz high-frequency power supply. The deposition pressure was 0.27 Pa with a flow of Ar 18 sccm - $N_2$ 2 sccm mixed gas. The inside of the deposition chamber was maintained at a moisture level of 65% during the initial stage. The effects of the evacuation time, duration time of heating the substrate holder at $250^{\circ}C$ as well as the plasma treatment on the inside chamber wall on the formation of c-BN were studied. The effects of heating as well as the plasma treatment very effectively eliminated the moisture adsorbed on the chamber wall. A pre-deposition condition for the stable and repeatable deposition of c-BN is suggested.

A study of Heat & Smoke Extraction Effects by the Various Operation of funnel Fan Shaft Ventilation (터널팬 샤프트 환기 방식에 따른 열 및 연기배출효과에 관한 연구)

  • Rie, Dong-Ho;Yoo, Ji-Oh
    • Fire Science and Engineering
    • /
    • v.18 no.2
    • /
    • pp.49-56
    • /
    • 2004
  • Today's popular ventilation systems include the combined jet fans and electrostatic precipitation systems or the combined jet fans and vertical shaft system. Tunnels with these two ventilation systems applied have been designed and opened, more and more interest has been put in maintenance of a tunnel after opening. Therefore. it is to become more important to come up with the optimal operation mode and the method for the evaluation of ventilation system. In this study, to evaluate a tunnel ventilation and its economy, a dynamic simulation program was developed which can simulate the unsteady-state tunnel air velocity and concentration of pollutants according to the traffic flow variations and operation condition of a ventilation system. We clarified the effectiveness usage on tunnel ventilation by using it and also we could found the most economical ventilation operation mode by application in real exit tunnel. We obtained that combination of fan system and electrostatic precipitation system was more economical than jet fan priority operation mode.

The Counterflow Speed and Density of a Fire fighter in Corridor (복도에서 소방관에 의한 카운터플로우 발생 시 밀도와 속도 측정)

  • Kim, Woon-Hyung;Kim, Heung-Youl;Joung, Woo-In;Kim, Jong-Hoon
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.1
    • /
    • pp.76-83
    • /
    • 2019
  • Purpose: The purpose of this study is to present data of density and speed through the experiment of the counterflow by firefighter in corridor. Method: Experimental setup including a corridor in building was prepared for measuring data with 1.5m and 2m width. Normal flow and counterflow were created for each. Data were measured using camera and acquired by video image analysis. Results: The counterflow in corridor resulted in increasing average density of about $0.55P/m^2$ and decreasing average movement speed of about 0.61 m/s. These data measured during the time when the counterflow occurred. Conclusion: It was found that counterflow by firefighter in corridor momentary increasing the density and decreasing walking speed of evacuee. Further experiments of the counterflow effect in the total evacuation time are needed.

A Study on the Performance Improvement Plan of Inflowing Air Emission (유입 공기의 배출 성능 개선방안에 관한 연구)

  • Lee, Hye-Young
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.2
    • /
    • pp.241-251
    • /
    • 2022
  • Purpose: In the event of a fire in a high-rise building, if the smoke control area is not effectively protected, smoke or flames enter the stairwell, making it difficult to evacuate. When inflowing air is discharged from a closed corridor, a negative pressure is formed in the corridor, the pressure in the smoke control area becomes excessively high, and the force required to open the door during evacuation is exceeded. Also, if the air introduced into the hallway is not exhausted, the smoke may flow back into the smoke control area. This paper tried to identify the problems caused by the inflowing air and to find out how to improve the performance. Method: Using the CONTAM program, simulations were performed with the basic conditions and the modified conditions. Result: If the inflowing air was discharged from the sealed corridor, overpressure occurred in the Smoke Control Area and exceeded the opening force, and the prevent smoke backflow was insufficient in the layer where the inflowing air was not discharged. Conclusion: "Differential pressure exhaust damper" application, simultaneous opening of two exhaust dampers, and automatic window installation between corridors and outdoors improved the exhaust performance of inflowing air.

A Numerical Study on the Effects of Meteorological Conditions on Building Fires Using GIS and a CFD Model (GIS와 전산유체역학 모델을 이용한 기상 조건이 건물 화재에 미치는 영향 연구)

  • Mun, Da-Som;Kim, Min-Ji;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.395-408
    • /
    • 2021
  • In this study, we investigated the effects of wind speed and direction on building fires using GIS and a CFD model. We conducted numerical simulations for a fire event that occurred at an apartment in Ulsan on October 8, 2020. For realistic simulations, we used the profiles of wind speeds and directions and temperatures predicted by the local data assimilation and prediction system (LDAPS). First, using the realistic boundary conditions, we conducted two numerical simulations (a control run, CNTL, considered the building fire and the other assumed the same conditions as CNTL except for the building fire). Then, we conducted the additional four simulations with the same conditions as CNTL except for the inflow wind speeds and direction. When the ignition point was located on the windward of the building, strong updraft induced by the fire had a wide impact on the building roof and downwind region. The evacuation floor (15th floor) played a role to spread fire to the downwind wall of the building. The weaker the wind speed, the narrower fire spread around the ignition point, but the higher the flame above the building reaches. When the ignition point was located on the downwind wall of the building, the flame didn't spread to the upwind wall of the building. The results showed that wind speed and direction were important for the flow and temperature (or flame) distribution around a firing building.