• 제목/요약/키워드: Evacuated tubes

검색결과 16건 처리시간 0.019초

진공관식 태양열 집열 튜브의 열성능 비교 분석 (A Comparative Analysis on the Thermal Performance of Solar Vacuum Collector Tubes)

  • 현준호;천원기
    • 한국태양에너지학회 논문집
    • /
    • 제23권3호
    • /
    • pp.15-22
    • /
    • 2003
  • This study deals with the collection of solar energy and its storage in evacuated tubular collector systems for different types of header design, flow passage and heat transfer devices. In order to elicit the most efficient combination of header design, flow passage, heat transfer hardware and operating conditions, a series of tests were done for the four different types of solar collectors utilizing vacuum tubes. The systems studied here either has the evacuated collector tubes with a metal cap on one end or the all-glass evacuated solar collector tubes These evacuated tubular collectors are known to be more efficient than the flat-plate ones in both direct and diffuse solar radiation. Test results show that the system comprised of the all-glass evacuated tubes with U-shaped copper pipes inside outperforms the other configurations. Especially, a rolled copper sheet tightly placed along the inner surface of each inner tube enhances heat transfer between the heated collector surface and the water contained in the U-shaped copper pipe.

이중 진공관형 태양열 집열기의 집열관 내부 형상과 운전 조건이 성능 변화에 미치는 영향 (Effects of Absorber Tube Shape and Operating Conditions on Thermal Performance of All-Glass Evacuated Tube Solar Collectors)

  • 최은용;김용;서태범
    • 한국태양에너지학회 논문집
    • /
    • 제25권1호
    • /
    • pp.19-25
    • /
    • 2005
  • All-glass evacuated tube solar collectors consist of glass evacuated tubes and absorber tubes. Solar thermal energy from the sun is transferred to the working fluid through the glass evacuated tube and the absorber tube. Several collectors which have different absorber tubes are tested to find the effects of the absorber tube shapes and the operating conditions such as the incident heat flux and the flow rate. As the results, the efficiency of the collector which has a finned tube U tube is about $2{\sim}5%$ higher than that of the others in all cases on an average. And the collector has a finned U tube has the highest efficiency at the high flow rate and the low incident heat flux. In this condition, the outlet mean temperature is low and the heat loss becomes small. Also, it is known that the fin effect is greater than the shade effect.

진공관형 태양열 집열기의 집열관 형상에 따른 태양 복사 에너지 흡수량의 변화 (Absorbing Rate of Solar Irradiation on Glass Evacuated Tube Collectors Depending on the Absorbing Tube Shape)

  • 서태범;강희동;김용
    • 한국태양에너지학회 논문집
    • /
    • 제25권1호
    • /
    • pp.35-44
    • /
    • 2005
  • The absorbing rate of solar irradiation on the surface of an absorbing tube in a glass evacuated solar collector is numerically investigated. Four different shapes of the absorbing tubes are considered, and the absorbed solar irradiation on the surface is calculated for several distances between the absorbing tubes and the incidence angle of solar beam radiation. From the calculation, it is known that the absorbing rate of solar irradiation on the tube surfaces depends upon the shape and the arrangement of absorbing tube and the incidence angle.

진공복사관식 집열기의 성능실측 및 최적화 연구 (Study on the Optical Performance of Evacuated Solar Collectors)

  • 천원기;강상훈;김기홍;이용국;장래웅
    • 한국태양에너지학회 논문집
    • /
    • 제21권4호
    • /
    • pp.63-71
    • /
    • 2001
  • This work has been carried out to find the ideal operating conditions for solar vacuum tube collectors which are widely used at present. Various types of solar collectors including a flat plate one were experimentally tested and examined to determine their thermal efficiencies and operating characteristics. Generally, solar vacuum tubes can be classified into two groups according to their design features. Of these, one is characterized by the insertion of a metallic device(such as a finned heat pipe) in an evacuated glass tube for the collection and transportation of solar energy. The other utilizes double glass tubes where the smaller one is contained inside the bigger one and soldered to each other after the small gap between them is evacuated. Both of these solar collectors are designed to minimize convection heat losses by removing the air which is in direct contact with the absorber surface. The performance of the former type can be readily analyzed by applying the relevant correlations developed for flat plate solar collectors. This has been demonstrated in the present study for the case of a solar collector where a heat pipe is inserted in an evacuated tube.

  • PDF

내관에 휜을 부착한 진공관형 집열기의 열성능 해석 (Thermal Performance Analysis of Glass Evacuated Solar Collector with a Finned Tube)

  • 김용;서태범;강용혁
    • 한국태양에너지학회 논문집
    • /
    • 제24권1호
    • /
    • pp.39-45
    • /
    • 2004
  • The thermal performance of glass evacuated tube solar collectors with finned tubes is numerically modelled with code and investigated to see the effect of toe inner tube diameter and incidence angle. The solar collector consists of a two-layered glass tube and an inner tube. Finned tubes are used as the inner tube of the collector in order to improve the performance of the solar collector. Two strip-type fins are attached on the opposite sides of the inner tube surface. The fin is wide enough to be tightly fatted inside the glass tube. The results show that if the incidence angle is small, the effect of the tube diameters is not significant on the thermal performance and the outlet air temperature. If the incidence angle is large, however, the outlet air temperature and the performance increases as the inner tube diameter increases.

진공관형 태양열 집열기의 내부형상 변화에 따른 성능 비교 (Thermal performance comparisons of the glass evacuated tube solar collectors of different absorber tubes)

  • 김용;서태범;윤성은;김영민
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 제17회 워크샵 및 추계학술대회
    • /
    • pp.595-598
    • /
    • 2005
  • The thermal performance of glass evacuated tube solar collectors are numerically and experimentally investigated. Four different shapes of solar collectors are considered and the performances of these solar collectors are compared. Dealing with a single collector tube, the effects of not only the shapes of the absorber tube but also the incidence angle of solar irradiation (beam radiation) on thermal performance of the collector are studied. However the solar irradiation consists of the beam radiation as well as the diffuse radiation. Also, the interference of solar irradiation and heat transfer interaction between the tubes exist in an actual solar collector. These effects are considered in this study experimentally and numerically the accuracy of the numerical model is verified by the experimental results. The result shows that the thermal performance of the absorber used a plate fin and U-tube is the best.

  • PDF

진공관형 태양열 집열기를 이용한 건조장치의 열교환기 해석 (Analysis of heat exchanger in the drying system using solar collector with evacuated tubes)

  • 강형석;한영민;이귀현;이성주;윤세창
    • 신재생에너지
    • /
    • 제2권1호
    • /
    • pp.46-55
    • /
    • 2006
  • The performance enhancement of heat exchanger in the drying system using solar collector with evacuated tubes is analyzed. First, for this analysis, the heat loss from a reversed trapezoidal fin attached at the pipe is calculated as a function of convection characteristic number ratio, fin base length and fin tip length. Also, the optimum heat loss and fin tip length of the fin under certain conditions are presented. The overall surface effectiveness of the cylinder with reversed trapezoidal fins in the heat exchanger are shown as a function of half fin base height, fin lateral slope and fin tip length.

  • PDF

진공관형 태양열 집열기의 흡수관 형상 변화에 따른 성능 비교 (Performance comparisons of the glass evacuated tube solar collectors of different absorber tubes)

  • 김용;서태범;윤성은;김영민
    • 신재생에너지
    • /
    • 제2권1호
    • /
    • pp.56-65
    • /
    • 2006
  • The thermal performance of glass evacuated tube solar collectors are numerically and experimentally investigated. Four different shapes of solar collectors are considered and the performances of these solar collectors are compared. Dealing with a single collector tube, the effects of not only the shapes of the absorber tube but also the incidence angle of solar irradiation (beam irradiation) on thermal performance of the collector are studied. However, the solar irradiation consists of the beam irradiation as well as the diffuse irradiation. Also, the interference of solar irradiation and heat transfer interaction between the tubes exist in an actual solar collector, These effects are considered in this study experimentally and numerically. The accuracy of the numerical model is verified by the experimental results. The result shows that the thermal performance of the absorber used a plate fin and U-tube is the best.

  • PDF

비유리식(nonglass) 진공관의 진공도가 집열판의 열적 특성에 미치는 영향 (Effect of Vacuum in a Non-glass Vacuum Tube on the thermal behavior of the Absorber Plate)

  • 오승진;현준호;김남진;이윤준;천원기
    • 한국태양에너지학회 논문집
    • /
    • 제28권3호
    • /
    • pp.67-73
    • /
    • 2008
  • This study has been carried out to investigate the effect of vacuum on the thermal performance of a nonglass evacuated tube. A series of measurements are made indoors to monitor the temperature change of the absorber plate contained in the evacuated tube under different conditions of vacuum and heat fluxes. Those temperatures measured at the thermal equilibrium could be used to assess the heat losses to the ambient in link with the steady operation of non-glass evacuated tubes for solar exploitation.

흡수관 형상과 일사 각도에 따른 진공관형 태양열 집열기의 성능 변화 (Thermal Performance Variations of Glass Evacuated Tube Solar Collectors Depending on the Absorber Shape and the Incidence Angle of Solar Ray)

  • 김용;서태범;강용혁
    • 설비공학논문집
    • /
    • 제17권7호
    • /
    • pp.659-668
    • /
    • 2005
  • The thermal performances of glass evacuated tube solar collectors are numerically investigated. Four different shapes of solar collectors are considered and the performances of these solar collectors are numerically investigated. Dealing with only collecting tube, the effects of not only the shape of the absorber tube but also the incidence angle of solar irradiation on the thermal performance of the collector are studied because the energy obtained by the absorber can be varied according to the incidence angle of solar radiation. However, the solar irradiation consists of the beam radiation as well as the diffuse radiation. Also, in actual system, the interference of solar irradiation and heat transfer interaction between the tubes should be considered. Therefore, this study considered these effects is carried out experimentally and numerically. The accuracy of the numerical model is verified by experiments. The result shows that the thermal performance of the absorber used a plate fin and U-tube is about $25\%$ better than those of the other models.