• Title/Summary/Keyword: Euthrophication

Search Result 2, Processing Time 0.016 seconds

A Studies on Removal of Nutrient Material by Using Dropwort Field (미나리꽝을 이용한 영양물질제거에 관한 연구)

  • 이영신;김창회
    • Journal of Environmental Health Sciences
    • /
    • v.29 no.3
    • /
    • pp.16-20
    • /
    • 2003
  • Nitrogen(N) and phosphorus(P) in surface streams mainly lead to euthrophication. It aggravates water quality and consequently increases the purification costs. As a resolution of water contamination caused by household drainage through irrigation route by 70% of the 1,300 community residents in Eum-Am Myun, Seo-San city, was implemented biological self-purification method by growing Oenanthe Javanica along the polluted water tunnel. The contaminated water was efficiently purified after passing the dropwort field; DO conc. of effluent water was increased 8.3∼61.9% after through the drop wort field. HRT of experiment system was changed 0.05∼1.50/day. 50% of BOD was eliminated at the range above 12 mg/l of Influent BOD conc. Also, 50% of COD was eliminated at the range above 30 mg/l of Influent COD conc. Finnally, the influent T-N loading at range below 1.5 g/m$^3$/d reduced 50% of Influent T-N conc., and so did influent T-P loading at the range below 0.03 g/m$^3$/dwas reduced 50% of Influent T-P conc.

Life Cycle Assessment of Biogas Production in Small-scale Household Digesters in Vietnam

  • Vu, T.K.V.;Vu, D.Q.;Jensen, L.S.;Sommer, S.G.;Bruun, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.5
    • /
    • pp.716-729
    • /
    • 2015
  • Small-scale household digesters have been promoted across Asia as a sustainable way of handling manure. The major advantages are that they produce biogas and reduce odor. However their disadvantages include the low recycling of nutrients, because digestate is dilute and therefore difficult to transport, and the loss of biogas as a result of cracks and the intentional release of excess biogas. In this study, life cycle assessment (LCA) methodology was used to assess the environmental impacts associated with biogas digesters in Vietnam. Handling 1,000 kg of liquid manure and 100 kg of solid manure in a system with a biogas digester reduced the impact potential from 4.4 kg carbon dioxide ($CO_2$) equivalents to 3.2 kg $CO_2$ equivalents compared with traditional manure management. However, this advantage could easily be compromised if digester construction is considered in the LCA or in situations where there is an excess of biogas which is intentionally released. A sensitivity analysis showed that biogas digesters could be a means of reducing global warming if methane emissions can be kept low. In terms of eutrophication, farms with biogas digesters had 3 to 4 times greater impacts. In order to make biogas digesters sustainable, methods for recycling digestates are urgently required.