• 제목/요약/키워드: Eutectoid decomposition

검색결과 5건 처리시간 0.017초

고온열전재료 $FeSi_2$의 변태거동 (Transformation Behaviour of High Temperature Thermoelectric $FeSi_2$)

  • 은영효;민병규;이동희
    • Applied Microscopy
    • /
    • 제25권3호
    • /
    • pp.90-98
    • /
    • 1995
  • In the Fe-Si system, a mixture of a($Fe_{2}Si_5$) - and ${\epsilon}$(FeSi)-composition powders was sintered and heat-treated subsequently at various temperatures and time to get thermoelectric ${\beta}$-phase($FeSi_2$) compacts. The different transformational sequences depending on the heat treating temperature were found through the investigation into phase transformation and microstructural development. That is, a rapid eutectoid decomposition of ${\alpha}{\to}{\beta}+Si$ occurred together with a accompanying slow reaction between the dispersed Si formed by above decomposition and the preexisted ${\epsilon}$ phase at temperatures below $830^{\circ}C$. The unreacted Si and the micropores formed due to the density change upon the transformation coarsened as heat treating time elapsed. At temperatures above $880^{\circ}C$, however, transformation was proceeded by a peritectoid reaction of ${\alpha}+{\epsilon}{\to}{\beta}$. It took at least 200min. to achieve 90% volume fracion of transformed ${\beta}$ phase, and the growth of micro-pores was also observed in this transformational sequence with prolonged heat treating time.

  • PDF

2원계 아공석 Ti-Co, Ti-Fe 합금의 공석반응 온도 아래의 온도에서 초석 ${\alpha}$ 반응 (Proeutectoid ${\alpha}$ Reaction at Sub-eutectoid Temperatures in Binary Bypoeutectoid Ti-Co, Ti-Fe Alloys)

  • 이확주
    • Applied Microscopy
    • /
    • 제24권3호
    • /
    • pp.78-86
    • /
    • 1994
  • A TEM study on proeutectoid ${\alpha}$ reaction at sub-eutectoid temperatures has been made in hypoeutectoid Ti-3.gw/o Co and Ti-5.2w/o Fe alloys. Widmanstatten ${\alpha}$ plates were formed in both alloys within the ${\beta}$ matrix with some modification of degenerate forms. These degenerate plates were formed by the sympathetic nucleation of ${\alpha}$ plates at ${\alpha}:{\beta}$ interphase boundaries. Three types of sympathetic nucleation, i.e., edge-to-edge, face-to-edge, face-to-face, were found in both alloys. The edge-to-edge sympathetically nucleated crystals formed a low-angle boundary between two crystals. The ${\alpha}:{\beta}$ interphase boundaries were found to be partially coherent interfaces which consist of regularly spaced misfit dislocations. The growth of these interphase boundaries were accomplished by the lateral movement of growth ledges. The intersection points of two ${\alpha}$ plates or the low angle boundaries which had formed by edge-to-edge sympathetic nucleation played a role as the potential sources of growth ledges during the growth of plate. The interfacial structures and the spatial morphologies of the degenerate proeutectoid ${\alpha}$ plates would be expected to influence the nucleation and growth of the succeeding eutectoid decomposition process.

  • PDF

무기화합물 첨가에 의한 C/C복합재료의 매트릭스 조직제어 (The Role of Inorganic Compounds Additions on the Matrix Microtexture Control of C/C Composite)

  • 박세민
    • 한국세라믹학회지
    • /
    • 제34권11호
    • /
    • pp.1151-1158
    • /
    • 1997
  • Fracture of uni-directional carbon fiber reinforced carbon matrix composite is strongly dependent on the orientation of basal plane in graphite matrix when it is limited within matrix. The orientation of basal planes are vertically stacked to carbon fiber which results in the weakness for applied tensile or shear force in thermosetting resin derived-carbon matrix composite. Microtextural control of the matrix was tried through chemical interaction between metal carbides and furan resin derived-carbon matrix. SiC and TiO2 addition made the orientation disordered. However, porosity increased due to decomposition of SiC. Interfacial bonding could be controlled by TiO2 addition, but carbon fiber was considerably reacted with TiC during thermal treatment higher than 2$600^{\circ}C$. Therefore, it is desirable to control the thermal treatment temperature at which decomposition of SiC was not serious and TiC/C was not formed eutectoid.

  • PDF

주철(鑄鐵)의 열처리조건(熱處理條件)에 의한 조직(組織) 및 기계적(機械的) 성질(性質)에 관(關)한 연구(硏究)(1) (Influence of Heat Treatment on the Structures and Mechanical Properties of Cast Irons.)

  • 김홍범;최창옥
    • 한국주조공학회지
    • /
    • 제2권2호
    • /
    • pp.10-17
    • /
    • 1982
  • This study has been carried out to determine the change of mechanical properties and microstructures by the heattreatment to relieve the residual stresses for gray cast irons. The results have been obtained from the experiment as follows; 1) The annealing above $600^{\circ}C$ for the stress relieving of gray cast iron decrease the tensile strength and hardness 2) The decrease reates of tensile strength and hardness of gray cast iron after annealing above $600^{\circ}C$ are increased with increasing the holding time. 3) The gray cast iron containing the elements of Mn, Cr has increased the heating temperature for the decrease of tensile strength and hardness. 4) The decrease of mechanical properties by annealing are assumed that the formation of ferrite takes placed from the decomposition of eutectoid cementite in the matrix.

  • PDF

STD11강의 상변화 및 기계적 성질에 미치는 초심냉처리의 영향 (Effect of Cryogenic Treatment on the Phase Change and Mechanical Property in STD11 steel for Die and Tool)

  • 김형준;장우양
    • 열처리공학회지
    • /
    • 제28권3호
    • /
    • pp.139-145
    • /
    • 2015
  • Effects of austenitizing, cryogenic treatment and tempering conditions on the phase change, microstructure and Vickers hardness value have been studied in STD11 steel for tool and die. The volume fraction of retained austenite increased with a rise in austenitizing temperature, while the volume fraction of eutectoid $M_7C_3$ carbides decreased. The retained austenite could be reduced by cryogenic treatment i.e., maintaining at $LN_2$ temperature ($-196^{\circ}C$) for 12hrs but a little amount of retained austenite did not transform to martensite further although holding time increased to 24 hrs or more. The microstructure of the quenched and then cryogenictreated specimen showed nano-sized and needle-shaped carbides in matrix due to the decomposition of martensite by tempering, but that of the one without cryogenic treatment still revealed retained austenite by tempering even at $500^{\circ}C$.