• 제목/요약/키워드: Eutectoid Structure

검색결과 21건 처리시간 0.026초

원심주조법으로 제조된 10% Cr 내열강의 등온 변태 거동 (Isothermal Transformation Behavior of 10% Cr Heat Resistant Steel Fabricated by Centrifugal Casting Process)

  • 김주업;이종훈;김두현;유위도;이재현
    • 열처리공학회지
    • /
    • 제27권2호
    • /
    • pp.72-78
    • /
    • 2014
  • Isothermal transformation behavior of a 10% Cr heat resistant steel fabricated by centrifugal casting process was investigated. Normalized specimen at $1100^{\circ}C$ for 1 hour was isothermally annealed at temperature range between $600^{\circ}C$ and $700^{\circ}C$ with various time. The annealed specimen had eutectoid structure which was generated along austenitic grain boundary during isothermal annealing. Areal fraction of eutectoid structure increased up to 25% after holding at $700^{\circ}C$ for 20 hours. It was observed that austenitic matrix was transformed to ferrite structure and fine $M_{23}C_6$ carbides with increase of annealing time. Time-temperature-transformation diagram of the centrifugally cast 10% Cr steel with 0.18 wt% C was plotted based on the results of isothermal transformation behavior.

과공석 강선에서 미세조직 인자들이 단면감소율에 미치는 영향 (Effects of Microstructural Parameters on the Reduction of Area in Hyper-eutectoid Steel Wires)

  • 안강석;박정훈;배형준;남원종
    • 소성∙가공
    • /
    • 제25권5호
    • /
    • pp.306-312
    • /
    • 2016
  • Effects of manufacturing conditions, such as austenitizing temperature, patenting temperature and carbon content in steels, on mechanical properties, especially on reduction of area (RA), of hyper-eutectoid steel wires were investigated. RA increased and then decreased with transformation temperature. This was attributed to the presence of abnormal structures in steels transformed at low transformation temperatures and the occurrence of shear cracking during tensile testing of steels transformed at high transformation temperatures. The increase of austenitizing temperature resulted in the increased austenite grain size and consequently the decrease of RA. The decrease of RA with increasing the carbon content in steels was attributed to the increased fraction of cleavage fracture in tensile fractured surfaces.

치과주조용 Ti-X%Cu(X=2,5,10)합금의 미세조직 및 경도 (Microstructure and Hardness of Ti-X%Cu(X=2,5,10) Alloys for Dental Castings)

  • 정종현
    • 대한치과기공학회지
    • /
    • 제31권3호
    • /
    • pp.9-14
    • /
    • 2009
  • This study evaluated the mechanical properties of Ti-Cu alloys with the hope of developing an alloy for dental casting with better mechanical properties than unalloyed titanium. Ti-Cu alloys with four concentrations of Cu(2,5,10wt%) were made in an argon-arc melting furnace. The microstructure and micro-Vickers hardness were determined. X-ray diffraction pattern test was performed on the polished specimens. The microstructure of 2%Cu and 5%Cu alloys are shown acicular ${\alpha}Ti$ phase formed on the surfaces of previously formed $\beta$grains. The 10%Cu alloys has essentially a eutectoid structure; this structure includes lamella of ${\alpha}Ti$ and $Ti_2Cu$ phase that transformed from ${\alpha}Ti$ at the eutectoid temperature. The micro-Vickers hardness of CP Ti specimens was significantly(p<0.05) lower than that of any of the other alloys. Among the Ti-Cu alloys, the 10%Cu alloys exhibited a significantly(p<0.05) higher hardness value. but lower than that of Ti-6%Al-4%V alloy. From these results, it was concluded that new alloys for dental castings should be designed as Ti-Cu based alloys if other properties necessary for dental castings were obtained.

  • PDF

치과주조용 Ti-Zr-(Cu)계 합금의 경도 및 미세조직 (Hardness and Microstructures of Ti-Zr-(Cu) based Alloys for Dental Castings)

  • 주규지
    • 대한치과기공학회지
    • /
    • 제27권1호
    • /
    • pp.65-71
    • /
    • 2005
  • Experimental Ti-13%Zr and Ti-13%Zr-5%Cu alloys were made in an argon-arc melting furnace. The grade 2 CP Ti was used to control. The alloys were cast into phosphate bonded $SiO_2$ investment molds using an argon-arc casting machine, and The hardness and microstructures of the castings were investigated in order to reveal their possible use for new dental casting materials and to collect useful data for alloy design. The hardness of the Ti-13%Zr-5%Cu alloy(379Hv) became higher than that of Ti-13%Zr(317Hv) alloy, and the hardness of this alloys became higher than that of CP Ti(247Hv). Increasing in the hardness of the Ti-13%Zr-5%Cu alloy was considered to be solid solution hardening as the Ti-Zr system shows a completely solid solution for both high temperature $\beta$phase and low temperature $\alpha$ phase and also the inclusion of the eutectoid structure($\alpha Ti+Ti_{2}Cu$). No martensitic structures are observed in the specimen made of CP Ti, but Ti-13%Zr and Ti-13%Zr-5%Cu alloys show a kind of martensitic structure. Ti-13%Zr-5%Cu shows the finest microstructure. From these results, it was concluded that new alloys for dental casting materials should be designed as Ti-Zr-Cu based alloys.

  • PDF

초음파를 이용한 공석강의 펄라이트 층상간격 평가 (Ultrasonic Evaluation of Pearlite Interlamellar Spacing in Eutectoid Steel)

  • 김준수;변재원;권숙인;이승석;안봉영
    • 열처리공학회지
    • /
    • 제14권1호
    • /
    • pp.22-26
    • /
    • 2001
  • The microstructural changes with pearlite formation heat treatment in eutectoid steel(railway steel) consisting of only pearlite structure were evaluated by the ultrasonic attenuation and velocity measurements. The result of this investigation showed a strong linear dependence of ultrasonic attenuation on pearlite interlamellar spacing, and accordingly on fracture strength of the pearlite.

  • PDF

Cu-Sn합금의 미세조직 및 음향특성에 미치는 Sn함량의 영향 (Effect of Sn Contents on the Microstructure and Acoustic Characteristics of Cu-Sn Alloys)

  • 홍영근;이정근;김명호
    • 한국주조공학회지
    • /
    • 제21권2호
    • /
    • pp.135-140
    • /
    • 2001
  • Microstructure of the bell made with Cu-Sn alloys was examined by optical and scanning electron microscope and that analyzed quantitatively with image analyzer. Also acoustic characteristics of the bells were measured in detail by using FFT type power spectrum analyzer. ${\alpha}-single$ phases of large grains only were observed in Cu-5%Sn alloy. However mixed structure of primary ${\alpha}-phase$ and eutectoid of ${\alpha}+{\delta}%_o$ was existed in the Cu-Sn alloys with more than 9%Sn. Also the area fraction of eutectoid phases gradually increased with an increased Sn content. From the result of acoustic test, it was found that frequency and tonal intensity decreased with the increased Sn content from 5%Sn to 11%Sn, and those were rather increased with further increase of that. The lowest frequency and tonal intensity were showed in Cu-11%Sn, and porosity decreased considerably frequency and tonal intensity of the bells.

  • PDF

경두 열처리 레일의 제조공정과 장래의 전망 (Manufacturing Process and Future Prospects of Head Hardened Heat-treated Rails)

  • 정우현;이정민;김창희
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1998년도 추계학술대회 논문집
    • /
    • pp.497-504
    • /
    • 1998
  • The manufacturing processes of the head hardened rails and the principles of the heat treatment for carbon steels are introduced in this paper, To get the good wear resistance of the rail, many kinds of microstructure had been developed for the rail head hardening. One of these is the tempered martensitic structure, which is very hard but brittle because of Quenching-Tempering Process. Another is the fine pearlitic structure by Slack Quenching. Now Banitic structure steels are emerging as a potential new material to replace eutectoid pearlitic steels for rail. The main reason of this change is due to the limitaion of pearlitic microstructure with regard to mechanical properties and wear resistances of railway rails.

  • PDF

자기적 방법에 의한 0.85% 탄소강의 열처리에 따른 미세조직 및 기계적 성질 평가 (Evaluation of Microstructures and Mechanical Property of Variously Heat Treated 0.85% Carbon Steel by Magnetic Method)

  • 변재원;권숙인
    • 한국재료학회지
    • /
    • 제13권2호
    • /
    • pp.81-87
    • /
    • 2003
  • Microstructures and mechanical properties of variously heat treated 0.85% carbon steel(eutectoid steel) were evaluated by magnetic property measurements. Microstructural analysis (pearlite interstellar spacing), measurement of mechanical properties(Rockwell hardness, yield stress, fracture stress) and magnetic properties(coercivity, remanence, hysteresis loss, saturation magnetization) were performed to clarify mutual relationships among these parameters. Water quenched specimens with martensite structure showed much higher coercivity and remanence than air cooled or furnace cooled specimens with pearlite structure. The linear dependence of coercivity and remanence on pearlite interlamellar spacing as well as on Rockwell hardness, yield stress and fracture stress was observed in the pearlitic steel. Hysteresis loss and saturation magnetization showed no distinct trend with pearlite interlamellar spacing.

화염급냉 표면처리된 Cu-8.8Al-4.5Ni-4.5Fe 합금의 미세구조 분석 및 내마모성에 관한 연구 (Characterization of the Microstructure and the Wear Resistance of the Flame-Quenched Cu-8.8Al-4.5Ni-4.5Fe Alloy)

  • 이민구;홍성모;김광호;김경호;김흥회
    • 열처리공학회지
    • /
    • 제17권6호
    • /
    • pp.346-355
    • /
    • 2004
  • The flame quenching process has been employed to modify the surfaces of commercial marine propeller material, aluminum bronze alloy (Cu-8.8Al-5Ni-5Fe), and the microstructure, hardness and wear properties of the flame-quenched layers have been studied. The thermal history was accurately monitored during the process with respect to both the designed maximum surface temperature and holding time. The XRD and EDX analyses have shown that at temperatures above $T_{\beta}$, the microstructure consisting of ${\alpha}+{\kappa}$ phases changed into the ${\alpha}+{\beta}^{\prime}$ martensite due to an eutectoid reaction of ${\alpha}+{\kappa}{\rightarrow}{\beta}$ and a martensitic transformation of ${\beta}{\rightarrow}{\beta}^{\prime}$. The ${\beta}^{\prime}$ martensite phase formed showed a face-centered cubic (FCC) crystal structure with the typical twinned structure. The hardness of the flame-quenched layer having the ${\alpha}+{\beta}^{\prime}$ structure was similar to that of the ${\alpha}+{\kappa}$ structure and depended sensitively on the size and distribution of hard ${\kappa}$ and ${\beta}^{\prime}$ phases with depth from the surface. As a result of the sliding wear test, the wear resistance of the flame-quenched layer was markedly enhanced with the formation of the ${\beta}^{\prime}$ martensite.

저탄소 보론강의 경화능에 미치는 W 첨가의 영향 (Effect of W Addition on the Hardenability of Low-Carbon Boron Steels)

  • 황병철
    • 한국재료학회지
    • /
    • 제24권9호
    • /
    • pp.488-494
    • /
    • 2014
  • The effect of tungsten (W) addition on the hardenability of low-carbon boron steels was investigated using dilatometry, microstructural observations and secondary ion mass spectroscopy. The hardenability was discussed with respect to transformation behaviour aspects depending on the segregation and precipitation of boron at austenite grain boundaries. A critical cooling rate producing a hardness corresponding to 90 % martensite structure was measured from a hardness distribution plot, and was used as a criterion to estimate hardenability at faster cooling rates. In the low-carbon boron steel, the addition of 0.50 wt.% W was comparable to that of 0.20 wt.% molybdenum in terms of critical cooling rate, indicating hardenability at faster cooling rates. However, the addition of 0.50 wt.% W was not more effective than the addition of .0.20 wt.% molybdenum at slower cooling rates. The addition of 0.20 wt.% molybdenum completely suppressed the formation of eutectoid ferrite even at the slow cooling rate of $0.2^{\circ}C/s$, while the addition of 0.50 wt.% W did not, even at the cooling rate of $1.0^{\circ}C/s$. Therefore, it was found that the effect of alloying elements on the hardenability of low-carbon boron steels can be differently evaluated according to cooling rate.