• 제목/요약/키워드: Eutectic silicon

검색결과 45건 처리시간 0.025초

전자기 진동을 이용한 Al-Si 합금의 조직 제어에 관한 연구 (A Study on the Structural Controlling of Al-Si Alloy by Using Electromagnetic Vibration)

  • 최정평;김기배;남태운;윤의박
    • 한국주조공학회지
    • /
    • 제26권5호
    • /
    • pp.205-210
    • /
    • 2006
  • 여러 전자기 재료 프로세싱 연구 중에서 연구 되어지지 않았던 Al-Si 합금의 조직제어를 직류 자기장과 교류 전류장을 사용하여 시도 하였다. 본 연구의 목적은 Al-Si 합금에서의 새로운 거시, 미시 조직제어를 하기 위해 사용된 전자기 진동의 영향을 조사하는 것이다. 전자기 진동이 초정 알루미늄의 형상 변화를 위해 낮은 진동수 (>60Hz)로 주어질 경우, 수지상의 형상이 구상화 형상으로 변해갔다. 전자기 진동이 공정 실리콘 형상 변화를 위해 주어졌을 경우, 높은 진동수 (>500Hz)에서 조대한 판상 조직이던 실리콘이 미세한 섬유상 조직으로 변화하고, 기계적 성질도 우수해졌다.

분사성형법에 의한 SiC입자강화 알루미늄 복합재료의 제조 I. 미세조직에 대한 고찰 (Formation of SiC Particle Reinforced Al Metal Matrix Composites by Spray Forming Process(I. Microstructure))

  • 박종성;김명호;배차헌
    • 한국주조공학회지
    • /
    • 제13권4호
    • /
    • pp.369-381
    • /
    • 1993
  • Aluminum alloy(AC8A) matrix composites reinforced with SiC particles(10% in vol.) were fabricated by Centrifugal Spray Deposition(CSD) process. The microstructures were investigated in order to evaluate both the mixing mode between aluminum matrix and SiC particles, and the effect of SiC particles on the cooling behaviours of droplets during flight and preforms deposited. A non-continuum mathematical calculation was performed to explain and to quantify the evolution of microstructures in the droplets and preforms deposited. Conclusions obtained are as follows; 1. The powders produced by CSD process showed, in general, ligament type, and more than 60% of the powders produced were about 300 to 850 um in size. 2. AC8A droplets solidified during flight showed fine dendritic structure, but AC8A droplets mixed with SiC particles showed fine equiaxed grain structure, and eutectic silicon were formed to crystallize granularly between fine aluminum grains. 3. SiC particles seem to act as a nucleation sites for pro-eutectic silicon during solidification of AC8A alloy. 4. The microstructure of composite powders formed by CSD process showed particle embedded type, and resulted in dispersed type microstructure in preforms deposited. 5. The pro-eutectic silicon crystallized granularly between fine aluminum grains seem to prohibit grains from growth during spray deposition process. 6. The interfacial reactions between aluminum matrix and SiC particles were not observed from the deposit performs and the solidified droplets. 7. The continuum model seem to be useful in connecting the processing parameters with the resultant microstructures. From these results, it was concluded that the fabrication of aluminum matrix composites reinforced homogeneously with SiC particles was possible.

  • PDF

Fe-3%C-x%Cr-y%V-w%Mo-z%W 다합금계백주철의 주방상태 및 급냉조직 (As-Cast and Solidification Structures of Fe-3%C-x%Cr-y%V-w%Mo-z%W Multi- Component White Cast Irons)

  • Yu, sung-Kon;Shin, Sang-Woo
    • 한국재료학회지
    • /
    • 제12권5호
    • /
    • pp.414-422
    • /
    • 2002
  • Three different multi-component white cast irons alloyed with Cr, V, Mo and W were prepared in order to study their as-cast and solidification structures. Three combinations of the alloying elements were selected so as to obtain the different types of carbides and matrix structures : 3%C-10%Cr-5%Mo-5%W(alloy No.1), 3%C-10%V-5% Mo-5%W(alloy No. 2) and 3%C-17%Cr-3% V(alloy No.3). The as-cast microstructures were investigated with optical and scanning electron microscopes. There existed two different types of carbides, $M_7C_3$ carbide with rod-like morphology and $M_6C$ carbide with fishbone-like one, and matrix in the alloy No. 1. The alloy No. 2 consisted of MC carbide with chunky and flaky type and needle-like $M_2C$ carbide, and matrix. The chunky type referred to primary MC carbide and the flaky one to eutectic MC carbide. The morphology of the alloy No. 3 represented a typical hypo-eutectic high chromium white cast iron composed of rod-like $M_7C_3$ carbide which is very sensitive to heat flow direction and matrix. To clarify the solidification sequence, each iron(50g) was remelted at 1723K in an alumina crucible using a silicon carbide resistance furnace under argon atmosphere. The molten iron was cooled at the rate of 10K/min and quenched into water at several temperatures during thermal analysis. The solidification structures of the specimen were found to consist of austenite dendrite(${\gamma}$), $ ({\gamma}+ M_7C_3)$ eutectic and $({\gamma}+ M_6C)$ eutectic in the alloy No. 1, proeutectic MC, austenite dendrite(${\gamma}$), (${\gamma}$+MC) eutectic and $({\gamma}+ M_2C)$ eutectic in the alloy No. 2, and proeutectic $M_7C_3$ and $ ({\gamma}+ M_7C_3)$ eutectic in the alloy No 3. respectively.

Al-10.5wt%Si-2wt%Cu 다이 캐스팅용 2차 지금의 미세조직에 미치는 Sr의 양과 유지시간의 영향 I (The Effect of Sr Addition and Holding Time on Microstructure of Al-10.5%Si-2%Cu Secondary Die-casting Alloys)

  • 신상수;김명용;염길용
    • 한국주조공학회지
    • /
    • 제30권5호
    • /
    • pp.161-166
    • /
    • 2010
  • In this examination, the effect of Sr addition and holding time on microstructure of Al-10.5wt%Si-2wt%Cu secondary die-casting alloy was investigated. Degree of undercooling was improved with increasing the Sr content in this alloy. Up to 0.02wt%Sr addition, acicular and lamellar eutectic structure was observed in the microstructure. Meanwhile, the eutectic Si was modified toward the fine fibrous form by increasing Sr content with more than 0.03wt% and holding time of the melt. The well- modified alloys showed decreased eutectic silicon size from 3.25 ${\mu}m$ to less than 0.8 ${\mu}m$. From these results, the optimal strontium content and holding time were identified on the Al-10.5wt%Si-2wt%Cu secondary die-casting alloy.

EFFECT OF MICROSTRUCTURE ON MECHANICAL PROPERTIES IN FRICTION STIR WELDED CAST A356 ALUMINUM ALLOY

  • Sato, Yutaka S.;Kaneko, Takayasu;Urata, Mitsunori;Kokawa, Hiroyuki
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.493-498
    • /
    • 2002
  • Friction stir welding (FSW) is a relatively new solid-state joining process which can homogenize the heterogeneous microstructure by intensely plastic deformation arising from the rotation of the welding tool. The present study applied the FSW to an A356 aluminum (AI) alloy with the as-cast heterogeneous microstructure in the T6 temper condition, and examined an effect of microstructure on mechanical properties in the weld. The base material consisted of Al matrix with a high density of strengthening precipitates, large eutectic silicon and a lot of porosities. The FSW led to fragment of the eutectic silicon, extinction of the porosities and dissolution of the strengthening precipitates in the Al alloy. The dissolution of strengthening precipitates reduced the hardness of the weld around the weld center and the transverse ultimate tensile strength of the weld. Longitudinal tensile specimen containing only the stir zone showed the roughly same strength as the base material and a much larger elongation. Moreover, Charpy impact tests indicated that the stir zone had remarkably the higher absorbed energy than the base material. The higher mechanical properties of the stir zone were attributed to a homogenization of the as-cast heterogeneous microstructure by FSW.

  • PDF

AZ91합금의 조직(組織)과 시효특성(時效特性)에 미치는 Ca 및 Si의 영향(影響) (Effects of Ca, Si on the Microstructure and Aging Characteristic of AZ91 Alloy)

  • 지태구;김용규
    • 열처리공학회지
    • /
    • 제15권6호
    • /
    • pp.260-268
    • /
    • 2002
  • The effects of calcium and silicon on microstructure and aging characteristics of AZ91 magnesium alloy during T5 treatment was investigated. The addition of 0.88% calcium or 0.25% silicon to AZ91 alloy made dendrite cell smaller. Especially, silicon is more effectively acted as refinement of the dendrite cell than calcium. It is due to that $Mg_2Si$ precipitated at the dendrite cell boundary or in the matrix during T5 treatment of Si added AZ91 alloy retarded the growth of the secondary phase. In the mean while, without inducing the precipitates containing calcium, calcium was segregated mainly around secondary phase such as $Mg_{17}Al_{12}$ and partially dissolved in ternary eutectic (Mg-Al-Ca) structure. In the AZ91 alloy containing both silicon and calcium, more finely distributed $Mg_2Si$ in matrix homogeneously and much finer microstructure were obtained than those containing silicon or calcium. Hence, An AZ91 containing both silicon and calcium was more effective to retarding the growth of the secondary phase than the other AZ91 alloy such as AZ91 alloy containing silicon or AZ91 alloy containing calcium.

규소의 질화반응에 있어 산화마그네시움의 효과 (Effect of Magnesium Oxide on the Nitridation of Silicon Compact.)

  • 박금철;최상원
    • 한국세라믹학회지
    • /
    • 제20권4호
    • /
    • pp.305-314
    • /
    • 1983
  • In order to enhance the rate of th nitridation and to give the high density of reaction-bonded silicon nitride MgO powder as nitriding aid were added to silicon powders and the mixture was pressed isostatically into compacts which were nitrided in the furnace of 1, 35$0^{\circ}C$ where 95% $N_2$-5% $H_2$ gases were flowing. As the other nitriding aid $Mg(NO_3)_2 6H_2O$ was selected, A slip made of magnesium nitrate solution and fine silicon particles was spray-dried and then decomposed at 30$0^{\circ}C$. Magnesium oxide-coated silicon powders were formed into compacts prior to the nitridation on the same condition as the former. Magnesium nitrate (MgO, produced from the decomposition of magnesium nitrate) was more effective for the formation of the $\beta$-phase in the initial stage of the nitridation probably due to the easy formation of $MgO-SiO_2$-metal oxide eutectic melt. It has been confirmed that forsterite was formed as a result of the reaction between MgO and $SiO_2$ film of silicon surface. It was considered that MgO produced from magnesium nitrate may be finer more reactive and more uniformly distributed on the surface of silicon particles than original MgO. The higher the forming pressure was the more the $\beta$-phase was formed.

  • PDF

아공정(亞共晶)Cr 주철(鑄鐵)의 기지조직(基地組織)에 미치는 Si의 영향(影響) (Study on the effect of silicon content on matrix of hypo-eutectic Cr alloyed cast iron)

  • 김석원;이오연;김동건
    • 한국주조공학회지
    • /
    • 제4권2호
    • /
    • pp.96-101
    • /
    • 1984
  • The morphologies of eutectic cell formed during solidification affect on the mechanical properties in high Cr cast iron. In order to investigate the influence of Si on the structure, five kinds of specimen containing 16.42% Cr with varying amount of Si (0.51%, 1.17%, 2.22%, 2.71%, 3.56%) were poured into shell mould preheated $330^{\circ}C$ at $1510^{\circ}C$. The effect of Si on matrix in hypo-eutctic Cr cast iron (2.48% C, 16.42%) were studied through its mechanical tests and observation of microstructure using of metallurgical microscope, EPMA, SEM and Image analyzer systematically. The results obtained from the above studies are as follows: 1. Because of ${\Delta}T$ decreasing with increasing Si content, the morpologies of colony change into uniform bar-type carbide from plate-type ones, moreover eutectic colony size (Ew) becomes narrow and spacing of carbide wider. 2. As Si content increases, the amount of carbides also increases and most of Cr were dissolved in carbides while Si in matrix. 3. The hardness, tensile strength and wear resistance were increasing while impact value decreased with increasing Si content. 4. In fracture section, small amount of dimple pattern was observed in less than 1.17% Si but more than 2.22% Si river pattern was presented.

  • PDF

가압소결한 질화규소의 산화거동에 미치는 소결 첨가제의 영향 (Effect of Sintering Additives on the Oxidation Behavior of Hot Pressed Silicon Nitride)

  • 최헌진;김영욱;이준근
    • 한국세라믹학회지
    • /
    • 제31권7호
    • /
    • pp.777-783
    • /
    • 1994
  • Oxidation behavior of hot-pressed silicon nitride ceramics with various sintering additives has been investigated. The weight gain of each specimens has shown in the range of 0.11 mg/$\textrm{cm}^2$ ~3.4 mg/$\textrm{cm}^2$ at 140$0^{\circ}C$ for 192 h and eleven compositions have shown good oxidation resistance with the weight gain below 0.5 mg/$\textrm{cm}^2$. The oxidation rate has been shown to obey the parabolic rate law and the oxidized surface has consisted of $\alpha$-cristobalite and M2Si2O7 or MSiO3 (M=rare earth or transition metals) phase. The oxidation rate of each specimens has related to the eutectic temperature between additive oxide and SiO2, and ionic radius of additive oxides, respectively. From the above results, it could be concluded that the oxidation behavior of hot pressed silicon nitride is dominated by the high temperature properties of grain boundary glassy phase and the high temperature properties of grain boundary glassy phase are affected by the ionic radius of additive oxides.

  • PDF

알루미늄 - 규소 합금의 용탕단조시 유동도에 미치는 규소 함량 및 용탕 처리의 영향 (Effects of Si Content and Melt Treatment on the Fluidity of Al-Si Alloy during Squeeze Casting)

  • 이학주;권해욱
    • 한국주조공학회지
    • /
    • 제26권6호
    • /
    • pp.241-248
    • /
    • 2006
  • The effects of silicon content and melt treatment on the fluidity of Al-Si alloys during squeeze casting were investigated. The fluidity of Al-3.0 wt%Si alloy was found to be lower than that of Al-1.0 wt%Si and the fluidity of the alloy with more than 3.0 wt%Si increased with the silicon content upto 13.0 wt% and rather decreased with15.0 wt%. The fluidity was also increased by the separated treatment of grain refinement or eutectic modification, and even more by the simultaneous treatment of both. The fluidity of hypereutectic alloy was increased by the refinement of primary silicon particle.