• Title/Summary/Keyword: Eulerian-Lagrangian framework

Search Result 12, Processing Time 0.019 seconds

Numerical Analysis of the Energy-Saving Tray Absorber of Flue-Gas Desulfurization Systems (배연탈황설비의 에너지 절약형 트레이 흡수탑에 대한 수치 해석적 연구)

  • Hwang, Jae-Min;Choi, Ssang-Suk;Chung, Jin-Taek
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.8
    • /
    • pp.775-782
    • /
    • 2010
  • This study is performed to study the effect of the tray in the absorber of a flue-gas desulphurization (FGD) system by using a computational fluid dynamic (CFD) technique. Stagnant time of slurry and the pressure drop in the FGD absorber increase when a tray is used in the absorber. Stagnant time of slurry results in an increase in the desulfurization effect and a decrease in the power of the absorber recirculation pump; however, increased pressure drop requires more power of booster fan in the FGD system should be increased. The gas and slurry hydrodynamics inside the absorber is simulated using a commercial CFD code. The continuous gas phase has been modeled in an Eulerian framework, while the discrete liquid phase has been modeled by adopting a Lagrangian approach by tracking a large number of particles through the computational domain. It was observed that the power saved upon increasing the stagnant time of slurry was more than increased power with pressure drop.

A wind-induced snow redistribution study considering contact based on a coupling model of wind and discrete snow particles

  • Bin Wang;Shengran Hao;Shu Liu;Duote Liu;Yongle Li;Haicui Wang
    • Wind and Structures
    • /
    • v.39 no.3
    • /
    • pp.207-222
    • /
    • 2024
  • This paper presents a numerical simulation method for snow drift that takes into account the cohesion effect of snow particles. The critical state of free collapse accumulation of idealized snow particles is used to indirectly infer the effect of interparticle interactions on snow transport and re-accumulation. With the help of the Hertz-Mindlin with JKR cohesion contact model, the particle angle of repose is calibrated with a number of contact parameters through numerical experiment. The surface energy for a given property of snow particles is determined using the observed snow angle of repose, and a continuous-discrete snow drift two-way coupled numerical model incorporating these optimized contact parameters is developed. The snow redistribution pattern on a stepped flat roof structure is simulated, and the results are found to be consistent with those of the field measured in terms of phenomena and general laws, verifying the achievability and effectiveness of the presented method. To eliminate the influence of environmental conditions, wind tunnel tests are also conducted, and it is found that the reconstructed depth and reaccumulated angle of snowdrift resulting from the numerical simulation are in closer agreement with the experimental results, further confirming the enhancement achieved by introducing the contact effect.