• 제목/요약/키워드: Eulerian Two-Phase

검색결과 69건 처리시간 0.02초

온도구배가 있는 액체 내에서 기포가 유발하는 대류유동 (Bubble-driven Convective Flow in the Liquid with Temperature Gradient)

  • 배대석;김정수
    • 한국추진공학회지
    • /
    • 제15권4호
    • /
    • pp.65-72
    • /
    • 2011
  • 수직온도구배를 가진 유체 내의 기포유동을 수치해석적 방법으로 연구하였다. 본 연구의 목적은 Eulerian-Lagrangian 방정식모델을 적용하여 온도가 수직으로 층상화된 기-액 2상류(two phase flow)의 대류유동을 정확하게 해석할 수 있는 프로그램의 개발과 온도가 층상화된 유체의 기포에 의한 온도혼합과정의 가시화 그리고 유체역학적 특성을 이해하는 것이다. 또한, 기포반경, 보이드율, 그리고 유량이 기포에 의해 야기된 대류유동에 미치는 영향을 함께 검토하였다.

Numerical Analysis of Plume Characteristics and Liquid Circulation in Gas Injection Through a Porous Plug

  • Choi, Choeng-Ryul;Kim, Chang-Nyung
    • Journal of Mechanical Science and Technology
    • /
    • 제14권12호
    • /
    • pp.1365-1375
    • /
    • 2000
  • Two phase flows have been numerically calculated to analyze plume characteristics and liquid circulation in gas injection through a porous plug. The Eulerian approach has been for formulation of both the continuous and dispersed phases. The turbulence in the liquid phase has been modeled using the standard $textsc{k}$-$\varepsilon$ turbulence model. The interphase friction coefficient has been calculated using correlations available in the literature. The turbulent dispersion of the phase has been modeled by the "dispersion Prand시 number". The predicted mean flows is compared well with the experimental data. The plume region area and the axial velocities are increased with the gas flow rate and with the decrease in the inlet area. The turbulent intensity also shows the same trend. Also, the space-averaged turbulent kinetic energy for various gas flow rates and inlet areas has been obtained. The results are of interest in the design and operation of a wide variety of materials and chemical processing operations.

  • PDF

강내탄도 전산해석 코드 개발과 항력 모델에 따른 이상유동 분석 (Development of Numerical Code for Interior Ballistics and Analysis of Two-phase Flow according to Drag Models)

  • 성형건;장진성;유승령;노태성
    • 한국추진공학회지
    • /
    • 제15권6호
    • /
    • pp.38-46
    • /
    • 2011
  • 점화제 주입 특성을 모사할 수 있는 2차원 이상유동의 강내탄도 해석코드 개발하였다. 장약인 추진제의 연소 해석을 위해 Eulerian-Lagrangian 접근법과 LSHUS 기법을 적용하였다. 탄자의 이동에 따른 이동경계면의 해석을 위해 Ghost Cell Extrapolation method를 사용하였다. 개발된 2차원 강내탄도 해석코드는 무차원 강내탄도 해석 코드인 IBHVG2와 기존에 개발된 1차원 강내탄도 해석코드와 비교 검증하였다. 항력식에 따른 이상유동의 비교에서 항력식이 탄자탈출속도의 수치적 해석에 영향을 주는 것을 확인하였다.

Eulerian-Lagrangian 다상 유동해석법에 의한 피에조인젝터의 니들-노즐유동 상관성 연구 (A Study on Relation of Needle-Nozzle Flow of Piezo-driven Injector by using Eulerian-Lagrangian Multi-phase Method)

  • 이진욱;민경덕
    • 한국자동차공학회논문집
    • /
    • 제18권5호
    • /
    • pp.108-114
    • /
    • 2010
  • The injection nozzle of an electro-hydraulic injector is being opened and closed by movement of a injector's needle which is balanced by pressure at the nozzle seat and at the needle control chamber, at the opposite end of the needle. In this study, the effects of needle movement in a piezo-driven injector on unsteady cavitating flows behavior inside nozzle were investigated by cavitation numerical model based on the Eulerian-Lagrangian approach. Aimed at simulating the 3-D two-phase flow behavior, the three dimensional geometry model along the central cross-section regarding of one injection hole with real design data of a piezo-driven diesel injector has been used to simulate the cavitating flows for injection time by at fully transient simulation with cavitation model. The cavitation model incorporates many of the fundamental physical processes assumed to take place in cavitating flows. The simulations performed were both fully transient and 'pseudo' steady state, even if under steady state boundary conditions. As this research results, we found that it could analyze the effect the pressure drop to the sudden acceleration of fuel, which is due to the fastest response of needle, on the degree of cavitation existed in piezo-driven injector nozzle.

바이오매스 급속열분해 반응기내 열전달 특성 (HEAT TRANSFER CHARACTERISTICS IN A FAST PYROLYSIS REACTOR FOR BIOMASS)

  • 최항석
    • 한국전산유체공학회지
    • /
    • 제15권1호
    • /
    • pp.9-16
    • /
    • 2010
  • The characteristics of flow and heat transfer in a bubbling fluidized bed are investigated by means of computational fluid dynamics (CFD). To simulate two-phase flow for the gas and solid flows, Eulerian-Eulerian approach is applied. Attention is paid for a heat transfer from the wall to fluidized bed by bubbling motion of the flow. From the result, it is confirmed that heat transfer is promoted by chaotic bubbling motion of the flow by enhancement of mixing among solid particles. In particular, the vortical flow motion around gas bubble plays an important role for the mixing and consequent heat transfer. Discussion is made for the time and space averaged Nusselt number which shows peculiar characteristics corresponding to different flow regimes.

Two-fluid modelling for poly-disperse bubbly flows in vertical pipes: Analysis of the impact of geometrical parameters and heat transfer

  • Andrea Allio ;Antonio Buffo ;Daniele Marchisio;Laura Savoldi
    • Nuclear Engineering and Technology
    • /
    • 제55권3호
    • /
    • pp.1152-1166
    • /
    • 2023
  • The bubbly flow of air or steam in subcooled water are investigated here in several test cases, characterized by different pipe sizes, bubble dimensions and flow rates, by means of CFD using a Eulerian-Eulerian approach. The performance of models that differ for the turbulence closure in the continuous phase, as well as for the description of the lift force on the dispersed phase, are compared in detail. When air is considered, the space of the experimental parameters leading to a reasonable performance for the selected models are identified and discussed, while the issues left in the modelling of the concurrent condensation are highlighted for the cases where steam is used.

Gas Bubble Driven Circulation Systems에서의 이상유동 특성의 시뮬레이션 (A Simulation on the Two-Phase Flow Characteristics in Gas Bubble Driven Circulation Systems)

  • 최청렬
    • 한국시뮬레이션학회논문지
    • /
    • 제7권2호
    • /
    • pp.17-32
    • /
    • 1998
  • The flow fields in Gas Bubble Driven Circulation Systems were numerically analyzed. In various gas flow rate and bubble size, the flow characteristics were predicted. Eulerian-Eulerian approach was used for the formulation of both the continuous and dispersed phases. The modification of the general purpose computer program PHOENICS code was employed to predict the mean flow fields, turbulent characteristics, gas dispersion, volume fraction. The predicted shows very satisfactory agreement with experimental results for all regions of ladle. The results are of interest in the design and operation of wide variety of material processing.

  • PDF

난류 횡단류에 수직 분사 되는 액주의 분열 및 기화 특성에 관한 LES (LES of Breakup and Atomization Characteristics of a Liquid Jet into Cross Turbulent Flow)

  • 양승준;구자예;성홍계
    • 한국추진공학회지
    • /
    • 제14권2호
    • /
    • pp.1-9
    • /
    • 2010
  • 난류 유동장으로 분사되는 액체 제트의 액주 분열과 액적 미립화 현상에 관한 LES를 수행하였다. 기체상태의 공기 유동해석에 Eulerian 해법을 사용하고, 액적 추적을 위하여 Lagrangian 해법을 사용하여 기체-액체간 이상유동(two phase flow) 해석을 수행하였다. 액적 분열 과정 모사에 blob-KH 분열 모델을 적용하여 액주와 액적의 분열이 관찰되었다. 일정한 공기 유동 조건에서 액체 분사 속도 변화를 통한 액체-기체 운동량 플럭스 비의 변화에 따른 액체 제트의 침투깊이를 조사하였으며 실험결과와 유사함을 알 수 있었다. 분사 제트의 분열에 따라 유동장에 존재하는 액적의 분포를 Sauter 평균 입경(SMD)의 분석을 통해 수행하였다.

Lagrangian-Eulerian 기법을 이용한 고압 디젤 분무 시뮬레이션의 수치해석격자 의존성 저감에 관한 연구 (Reduction of a Numerical Grid Dependency in High-pressure Diesel Injection Simulation Using the Lagrangian-Eulerian CFD Method)

  • 김사엽;오윤중;박성욱;이창식
    • 한국자동차공학회논문집
    • /
    • 제20권1호
    • /
    • pp.39-45
    • /
    • 2012
  • In the standard CFD code, Lagrangian-Eulerian method is very popular to simulate the liquid spray penetrating into gaseous phase. Though this method can give a simple solution and low computational cost, it have been reported that the Lagrangian spray models have numerical grid dependency, resulting in serious numerical errors. Many researches have shown the grid dependency arise from two sources. The first is due to unaccurate prediction of the droplet-gas relative velocity, and the second is that the probability of binary droplet collision is dependent on the grid resolution. In order to solve the grid dependency problem, the improved spray models are implemented in the KIVA-3V code in this study. For reducing the errors in predicting the relative velocity, the momentum gain from the gaseous phase to liquid particles were resolved according to the gas-jet theory. In addition, the advanced algorithm of the droplet collision modeling which surmounts the grid dependency problem was applied. Then, in order to validate the improved spray model, the computation is compared to the experimental results. By simultaneously regarding the momentum coupling and the droplet collision modeling, successful reduction of the numerical grid dependency could be accomplished in the simulation of the high-pressure injection diesel spray.

Numerical Simulation of Two-Phase Flow field and Performance Prediction for Solid Rocket Motor Nozzle

  • Wahab, Shafqat;Kan, Xie;Yu, Liu
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.275-282
    • /
    • 2008
  • This paper presents numerical investigation of multi-phase flow in solid rocket motor nozzle and effect of multi-phases on the performance prediction of the Solid Rocket Motor. Aluminized propellants are frequently used in solid rocket motors to increase specific impulse. An Eulerian-Lagrangian description has been used to analyze the motion of the micrometer sized and discrete phase that consist of the larger particulates present in the Solid Rocket Motor. Uniform particles diameters and Rosin-Rammler diameter distribution method has been used for the simulation of different burning of aluminum droplets generating aluminum oxide smokes. Roe-FDS scheme has been used to simulate the effects of the multi-phase flow. The results obtained show the sensitivity of this distribution to the nozzle flow dynamics, primarily at the nozzle inlet and exit. The analysis also provides effect of two phases on performance prediction of Solid Rocket Motor.

  • PDF