• Title/Summary/Keyword: Euler-Bernoulli model

Search Result 193, Processing Time 0.026 seconds

Quadratic B-spline finite element method for a rotating non-uniform Rayleigh beam

  • Panchore, Vijay;Ganguli, Ranjan
    • Structural Engineering and Mechanics
    • /
    • v.61 no.6
    • /
    • pp.765-773
    • /
    • 2017
  • The quadratic B-spline finite element method yields mass and stiffness matrices which are half the size of matrices obtained by the conventional finite element method. We solve the free vibration problem of a rotating Rayleigh beam using the quadratic B-spline finite element method. Rayleigh beam theory includes the rotary inertia effects in addition to the Euler-Bernoulli theory assumptions and presents a good mathematical model for rotating beams. Galerkin's approach is used to obtain the weak form which yields a system of symmetric matrices. Results obtained for the natural frequencies at different rotating speeds show an accurate match with the published results. A comparison with Euler-Bernoulli beam is done to decipher the variations in higher modes of the Rayleigh beam due to the slenderness ratio. The results are obtained for different values of non-uniform parameter ($\bar{n}$).

Numerical Tests of Large Mass Method for Stress Calculation of Euler-Bernoulli Beams Subjected to Support Accelerations (지지점 가속도에 의해 가진되는 보의 응력계산에 대한 거대질량법의 정확도)

  • Kim, Yong-Woo;Choi, Nam Seok;Jhung, Myung Jo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.188-193
    • /
    • 2013
  • The large mass method for dynamic analysis of statically determinate beams subjected to in-phase support motions is justified by showing that the equation of motion of the beams under consideration is equivalent to that of large mass model of the beam when an appropriate large mass ratio is employed. The accuracy of the stress responses based on the beam large mass method is investigated through careful numerical tests. The numerical results are compared to analytic solutions and the comparison shows that the large mass method yields not only the time history of motion but also the distributions of bending moment and shear force accurately.

  • PDF

EDISON Co-rotational Plane beam-Dynamic tip load를 이용한 가진주파수 변화에 따른 외팔보의 자유단 진동 연구

  • Park, Cheol-U;Ju, Hyeon-Sik
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.246-250
    • /
    • 2015
  • In this paper, Timoshenko and Euler-Bernoulli beam theories(EB-beam) are used, and Fast Fourier Transformation(FFT) analysis is then employed to extract their natural frequencies using both analytical approach and Co-rotational plane beam(CR-beam) EDISON program. EB-beam is used to analyze a spring-mass system with a single degree of freedom. Sinusoidal force with various frequencies and constant magnitude are applied to tip of each beam. After the oscillatory tip response is observed in EB-beam, it decreases and finally converges to the so-called 'steady-state.' The decreasing rate of the tip deflection with respect to time is reduced when the forcing frequency is increased. Although the tip deflection is found to be independent of the excitation frequency, it turns out that time to reach the steady state response is dependent on the forcing frequency.

  • PDF

Accuracy analysis of a hydroelastic model of a floating beam (부유식 유탄성 보 모델의 수렴성 연구)

  • Kim, Ki-Tae;Lee, Phill-Seung;Park, Kwang-Chun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.631-634
    • /
    • 2011
  • 본 연구에서는 규칙 파랑 중에 있는 부유식 구조물의 유탄성 거동을 해석 하고, 수치모델의 수렴성을 살펴본다. 부유식 구조물은 보로 모델링 하며, 유체는 이상유체로 가정하여 문제를 해결한다. 보 모델의 경우 Euler-Bernoulli 보 모델과 Timoshenko 보 모델로 나누어 그 특성을 비교 해 본다. 문제의 해석법에 있어서 부유식 구조물의 경우는 유한요소법을, 유체의 경우는 경계요소법을 이용하여, 상호 연성된 방정식을 이끌어 낸다. 상호 연성된 방정식을 토대로 Euler-Bernoulli 보 모델과 Timoshenko 보 모델의 거동 특성을 살펴보고 제시된 수치 모델을 기준으로 수렴성을 분석해 본다.

  • PDF

On forced and free vibrations of cutout squared beams

  • Almitani, Khalid H.;Abdelrahman, Alaa A.;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • v.32 no.5
    • /
    • pp.643-655
    • /
    • 2019
  • Perforation and cutouts of structures are compulsory in some modern applications such as in heat exchangers, nuclear power plants, filtration and microeletromicanical system (MEMS). This perforation complicates dynamic analyses of these structures. Thus, this work tends to introduce semi-analytical model capable of investigating the dynamic performance of perforated beam structure under free and forced conditions, for the first time. Closed forms for the equivalent geometrical and material characteristics of the regular square perforated beam regular square, are presented. The governing dynamical equation of motion is derived based on Euler-Bernoulli kinematic displacement. Closed forms for resonant frequencies, corresponding Eigen-mode functions and forced vibration time responses are derived. The proposed analytical procedure is proved and compared with both analytical and numerical analyses and good agreement is noticed. Parametric studies are conducted to illustrate effects of filling ratio and the number of holes on the free vibration characteristic, and forced vibration response of perforated beams. The obtained results are supportive in mechanical design of large devices and small systems (MEMS) based on perforated structure.

Dynamic characteristics of viscoelastic nanobeams including cutouts

  • Rabab A. Shanab;Norhan A. Mohamed;Mohamed A. Eltaher;Alaa A. Abdelrahman
    • Advances in nano research
    • /
    • v.14 no.1
    • /
    • pp.45-65
    • /
    • 2023
  • This paper aimed to investigate the nonclassical size dependent free vibration behavior of regularly squared cutout viscoelastic nanobeams. The nonlocal strain gradient elasticity theory is modified and adopted to incorporate the viscoelasticity effect. The Kelvin Voigt viscoelastic model is adopted to model the linear viscoelastic constitutive response. To explore the influence of shear deformation effect due to cutout, both Euler Bernoulli and Timoshenko beams theories are considered. The Hamilton principle is utilized to derive the dynamic equations of motion incorporating viscoelasticity and size dependent effects. Closed form solutions for the resonant frequencies for both perforated Euler Bernoulli nanobeams (PEBNB) and perforated Timoshenko nanobeams (PTNB) are derived considering different boundary conditions. The developed procedure is verified by comparing the obtained results with the available results in the literature. Parametric studies are conducted to show the influence of the material damping, the perforation, the material and the geometrical parameters as well as the boundary and loading conditions on the dynamic behavior of viscoelastic perforated nanobeams. The proposed procedure and the obtained results are supportive in the analysis and design of perforated viscoelastic NEMS structures.

Differential transform method and numerical assembly technique for free vibration analysis of the axial-loaded Timoshenko multiple-step beam carrying a number of intermediate lumped masses and rotary inertias

  • Yesilce, Yusuf
    • Structural Engineering and Mechanics
    • /
    • v.53 no.3
    • /
    • pp.537-573
    • /
    • 2015
  • Multiple-step beams carrying intermediate lumped masses with/without rotary inertias are widely used in engineering applications, but in the literature for free vibration analysis of such structural systems; Bernoulli-Euler Beam Theory (BEBT) without axial force effect is used. The literature regarding the free vibration analysis of Bernoulli-Euler single-span beams carrying a number of spring-mass systems, Bernoulli-Euler multiple-step and multi-span beams carrying multiple spring-mass systems and multiple point masses are plenty, but that of Timoshenko multiple-step beams carrying intermediate lumped masses and/or rotary inertias with axial force effect is fewer. The purpose of this paper is to utilize Numerical Assembly Technique (NAT) and Differential Transform Method (DTM) to determine the exact natural frequencies and mode shapes of the axial-loaded Timoshenko multiple-step beam carrying a number of intermediate lumped masses and/or rotary inertias. The model allows analyzing the influence of the shear and axial force effects, intermediate lumped masses and rotary inertias on the free vibration analysis of the multiple-step beams by using Timoshenko Beam Theory (TBT). At first, the coefficient matrices for the intermediate lumped mass with rotary inertia, the step change in cross-section, left-end support and right-end support of the multiple-step Timoshenko beam are derived from the analytical solution. After the derivation of the coefficient matrices, NAT is used to establish the overall coefficient matrix for the whole vibrating system. Finally, equating the overall coefficient matrix to zero one determines the natural frequencies of the vibrating system and substituting the corresponding values of integration constants into the related eigenfunctions one determines the associated mode shapes. After the analytical solution, an efficient and easy mathematical technique called DTM is used to solve the differential equations of the motion. The calculated natural frequencies of Timoshenko multiple-step beam carrying intermediate lumped masses and/or rotary inertias for the different values of axial force are given in tables. The first five mode shapes are presented in graphs. The effects of axial force, intermediate lumped masses and rotary inertias on the free vibration analysis of Timoshenko multiple-step beam are investigated.

Deflections and rotations in rectangular beams with straight haunches under uniformly distributed load considering the shear deformations

  • Barquero-Cabrero, Jose Daniel;Luevanos-Rojas, Arnulfo;Lopez-Chavarria, Sandra;Medina-Elizondo, Manuel;Velazquez-Santillan, Francisco;Sandoval-Rivas, Ricardo
    • Smart Structures and Systems
    • /
    • v.22 no.6
    • /
    • pp.689-697
    • /
    • 2018
  • This paper presents a model of the elastic curve for rectangular beams with straight haunches under uniformly distributed load and moments in the ends considering the bending and shear deformations (Timoshenko Theory) to obtain the deflections and rotations on the beam, which is the main part of this research. The traditional model of the elastic curve for rectangular beams under uniformly distributed load considers only the bending deformations (Euler-Bernoulli Theory). Also, a comparison is made between the proposed and traditional model of simply supported beams with respect to the rotations in two supports and the maximum deflection of the beam. Also, another comparison is made for beams fixed at both ends with respect to the moments and reactions in the support A, and the maximum deflection of the beam. Results show that the proposed model is greater for simply supported beams in the maximum deflection and the traditional model is greater for beams fixed at both ends in the maximum deflection. Then, the proposed model is more appropriate and safe with respect the traditional model for structural analysis, because the shear forces and bending moments are present in any type of structure and the bending and shear deformations appear.

Free Vibration Characteristics of Partially Embedded Piles (부분근입된 말뚝의 자유진동 특성)

  • 신성철;진태기;오상진;박광규
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.435-440
    • /
    • 2002
  • The free vibration of partially embedded piles is investigated. The pile model is based on the Bernoulli-Euler beam theory and the soil is idealized as a Winkler model for mathematical simplicity. The governing differential equation for the free vibrations of such members is solved numerically The piles with one typical end constraint (clamped/hinged/free) and the other hinged end with rotational spring are applied in numerical examples. The lowest three natural frequencies are calculated over a range of non-dimensional system parameters: the rotational spring parameter, the relative stiffness and the embedded ratio.

  • PDF

Buckling analysis of sandwich beam reinforced by GPLs using various shear deformation theories

  • Hanifehlou, Sona;Mohammadimehr, Mehdi
    • Computers and Concrete
    • /
    • v.25 no.5
    • /
    • pp.427-432
    • /
    • 2020
  • In this research, the buckling analysis of sandwich beam with composite reinforced by graphene platelets (GPLs) in two face sheets is investigated. Three type various porosity patterns including uniform, symmetric and asymmetric are considered through the thickness direction of the core. Also, the top and bottom face sheets layers are considered composite reinforced by GPLs/CNTs based on Halpin-Tsai micromechanics model and extended mixture rule, respectively. Based on various shear deformation theories such as Euler-Bernoulli, Timoshenko and Reddy beam theories, the governing equations of equilibrium using minimum total potential energy are obtained. It is seen that the critical buckling load decreases with an increase in the porous coefficient, because the stiffness of sandwich beam reduces. Also, it is shown that the critical buckling load for asymmetric distribution is lower than the other cases. It can see that the effect of graphene platelets on the critical buckling load is higher than carbon nanotubes. Moreover, it is seen that the difference between carbon nanotubes and graphene platelets for Reddy and Euler-Bernoulli beam theories is most and least, respectively.