• Title/Summary/Keyword: Euler-Bernoulli model

Search Result 193, Processing Time 0.02 seconds

Effects of porosity models on static behavior of size dependent functionally graded beam

  • Hamed, Mostafa A.;Sadoun, Ayman M.;Eltaher, Mohamed A.
    • Structural Engineering and Mechanics
    • /
    • v.71 no.1
    • /
    • pp.89-98
    • /
    • 2019
  • In this study, the mechanical bending behaviors of functionally graded porous nanobeams are investigated. Four types of porosity which are, the classical power porosity function, the symmetric with mid-plane cosine function, bottom surface distribution and top surface distribution are proposed in analysis of nanobeam for the first time. A comparison between four types of porosity are illustrated. The effect of nano-scale is described by the differential nonlocal continuum theory of Eringen by adding the length scale into the constitutive equations as a material parameter comprising information about nanoscopic forces and its interactions. The graded material is designated by a power function through the thickness of nanobeam. The beam is simply-supported and is assumed to be thin, and hence, the kinematic assumptions of Euler-Bernoulli beam theory are held. The mathematical model is solved numerically using the finite element method. Numerical results show effects of porosity type, material graduation, and nanoscale parameters on the static deflection of nanobeam.

Dynamic modeling of smart magneto-electro-elastic curved nanobeams

  • Ebrahimi, Farzad;Barati, Mohammad Reza;Mahesh, Vinyas
    • Advances in nano research
    • /
    • v.7 no.3
    • /
    • pp.145-155
    • /
    • 2019
  • In this article, the influence of small scale effects on the free vibration response of curved magneto-electro-elastic functionally graded (MEE-FG) nanobeams has been investigated considering nonlocal elasticity theory. Power-law is used to judge the through thickness material property distribution of MEE nanobeams. The Euler-Bernoulli beam model has been adopted and through Hamilton's principle the Nonlocal governing equations of curved MEE-FG nanobeam are obtained. The analytical solutions are obtained and validated with the results reported in the literature. Several parametric studies are performed to assess the influence of nonlocal parameter, magnetic potential, electric voltage, opening angle, material composition and slenderness ratio on the dynamic behaviour of MEE curved nanobeams. It is believed that the results presented in this article may serve as benchmark results in accurate analysis and design of smart nanostructures.

Improvement of thermal buckling response of FG-CNT reinforced composite beams with temperature-dependent material properties resting on elastic foundations

  • Bensaid, Ismail;Kerboua, Bachir
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.3
    • /
    • pp.207-223
    • /
    • 2019
  • Current investigation deals with the thermal stability characteristics of carbon nanotube reinforced composite beams (CNTRC) on elastic foundation and subjected to external uniform temperature rise loading. The single-walled carbon nanotubes (SWCNTs) are supposed to have a distribution as being uniform or functionally graded form. The material properties of the matrix as well as reinforcements are presumed to be temperature dependent and evaluated through the extended rule of mixture which incorporates efficiency parameters to capture the size dependency of the nanocomposite properties. The governing differential equations are achieved based on the minimum total potential energy principle and Euler-Bernoulli beam model. The obtained results are checked with the available data in the literature. Numerical results are supplied to examine the effects of numerous parameters including length to thickness ratio, elastic foundations, temperature change, and nanotube volume fraction on the thermal stability behaviors of FG-CNT beams.

Nonlinear vibration and stability of FG nanotubes conveying fluid via nonlocal strain gradient theory

  • Dang, Van-Hieu;Sedighi, Hamid M.;Chan, Do Quang;Civalek, Omer;Abouelregal, Ahmed E.
    • Structural Engineering and Mechanics
    • /
    • v.78 no.1
    • /
    • pp.103-116
    • /
    • 2021
  • In this work, a model of a functionally graded (FG) nanotube conveying fluid embedded in an elastic medium is developed based on the nonlocal strain gradient theory (NSGT) in conjunction with Euler-Bernoulli beam theory (EBT). The main objective of this research is to investigate the nonlinear vibration and stability analysis of fluid-conveying nanotubes. The governing equations of motion are derived by means of Hamiltonian principle. The analytical expressions of nonlinear frequencies and critical flow velocities for two different types of boundary conditions including pinned-pinned (P-P) and clamped-clamped (C-C) conditions are obtained by employing Galerkin method as well as Hamiltonian Approach (HA). Comparison of the obtained results with the published works show the acceptable accuracy of the current solutions. The effects of the power-law index, the nonlocal and material length scale parameters and the elastic medium on the stability and nonlinear responses of FG nanotubes are thoroughly investigated and discussed.

Surface elasticity-based modeling and simulation for dynamic and sensing performances of nanomechanical resonators

  • Kilho Eom
    • Advances in nano research
    • /
    • v.14 no.3
    • /
    • pp.285-294
    • /
    • 2023
  • The dynamic and sensing performances of nanomechanical resonators with their different boundary conditions are studied based on surface elasticity-based modeling and simulation. Specifically, the effect of surface stress is included in Euler-Bernoulli beam model for different boundary conditions. It is shown that the surface effect on the intrinsic elastic property of nanowire is independent of boundary conditions, while these boundary conditions affect the frequency behavior of nanowire resonator. The detection sensitivity of nanowire resonator is remarkably found to depend on the boundary conditions such that double-clamping boundary condition results in the higher mass sensitivity of the resonator in comparison with simple-support or cantilever boundary condition. Furthermore, we show that the frequency shift of nanowire resonator due to mass adsorption is determined by its length, whereas the frequency shift is almost independent of its thickness. This study enables a design principle providing an insight into how the dynamic and sensing performances of nanomechanical resonator is determined and tuned.

Green's function coupled with perturbation approach to dynamic analysis of inhomogeneous beams with eigenfrequency and rotational effect's investigations

  • Hamza Hameed;Sadia Munir;F.D. Zaman
    • Structural Monitoring and Maintenance
    • /
    • v.11 no.1
    • /
    • pp.19-40
    • /
    • 2024
  • The elastic theory of beams is fundamental in engineering of design and structure. In this study, we construct Green's function for inhomogeneous fourth-order differential operators subjected to associated constraints that arises in dealing with dynamic problems in the Rayleigh beam. We obtain solutions for homogeneous and completely inhomogeneous beam problems using Green's function. This enables us to consider rotational influences in determining the eigenfrequency of beam vibrations. Additionally, we investigate the dynamic vibration model of inhomogeneous beams incorporating rotational effects. The eigenvalues of Rayleigh beams, including first-order correction terms, are also computed and displayed in tabular forms.

Closed form interaction for safety assessment of DWCNTs: Mechanical vibration

  • Muzamal Hussain;Mohamed A. Khadimallah;Hamdi Ayed;Emad Ghandourah;Abir Mouldi;Abdelouahed Tounsi
    • Advances in nano research
    • /
    • v.17 no.4
    • /
    • pp.315-321
    • /
    • 2024
  • Here, vibration of double walled carbon nanotubes is evaluated using Euler-Bernoulli beam model. These tubes are placed on Winkler elastic foundation. A simple Galerkin's approach is presented to solve the tube governing equations and for extracting of vibration eigen-frequencies of double walled carbon nanotubes. The procedure is easy for computer programming with various combinations of boundary conditions. The frequency influence is observed with different parameters. Effects of Winkler foundation versus frequencies with varying lengths is examined for a number of boundary conditions. It is noticed that the frequencies are lower for higher length on increasing the Winkler foundation. The frequencies of clamped-clamped are higher than that of clamped simply supported end condition. The obtained results are compared with some experimental ones.

Mechanical behaviors of piezoelectric nonlocal nanobeam with cutouts

  • Eltaher, Mohamed A.;Omar, Fatema-Alzahraa;Abdraboh, Azza M.;Abdalla, Waleed S.;Alshorbagy, Amal E.
    • Smart Structures and Systems
    • /
    • v.25 no.2
    • /
    • pp.219-228
    • /
    • 2020
  • This work presents a modified continuum model to explore and investigate static and vibration behaviors of perforated piezoelectric NEMS structure. The perforated nanostructure is modeled as a thin perforated nanobeam element with Euler-Bernoulli kinematic assumptions. A size scale effect is considered by included a nonlocal constitutive equation of Eringen in differential form. Modifications of geometrical parameters of perforated nanobeams are presented in simplified forms. To satisfy the Maxwell's equation, the distribution of electric potential for the piezoelectric nanobeam model is assumed to be varied as a combination of a cosine and linear functions. Hamilton's principle is exploited to develop mathematical governing equations. Modified numerical finite model is adopted to solve the equation of motion and equilibrium equation. The proposed model is validated with previous respectable work. Numerical investigations are presented to illustrate effects of the number of perforated holes, perforation size, nonlocal parameter, boundary conditions, and external electric voltage on the electro-mechanical behaviors of piezoelectric nanobeams.

Analytical solution for natural frequency of monopile supported wind turbine towers

  • Rong, Xue-Ning;Xu, Ri-Qing;Wang, Heng-Yu;Feng, Su-Yang
    • Wind and Structures
    • /
    • v.25 no.5
    • /
    • pp.459-474
    • /
    • 2017
  • In this study an analytical expression is derived for the natural frequency of the wind turbine towers supported on flexible foundation. The derivation is based on a Euler-Bernoulli beam model where the foundation is represented by a stiffness matrix. Previously the natural frequency of such a model is obtained from numerical or empirical method. The new expression is based on pure physical parameters and thus can be used for a quick assessment of the natural frequencies of both the real turbines and the small-scale models. Furthermore, a relationship between the diagonal and non-diagonal element in the stiffness matrix is introduced, so that the foundation stiffness can be obtained from either the p-y analysis or the loading test. The results of the proposed expression are compared with the measured frequencies of six real or model turbines reported in the literature. The comparison shows that the proposed analytical expression predicts the natural frequency with reasonable accuracy. For two of the model turbines, some errors were observed which might be attributed to the difference between the dynamic and static modulus of saturated soils. The proposed analytical solution is quite simple to use, and it is shown to be more reasonable than the analytical and the empirical formulas available in the literature.

Prestressed concrete bridges with corrugated steel webs: Nonlinear analysis and experimental investigation

  • Chen, Xia-chun;Bai, Zhi-zhou;Zeng, Yu;Jiang, Rui-juan;Au, Francis T.K.
    • Steel and Composite Structures
    • /
    • v.21 no.5
    • /
    • pp.1045-1067
    • /
    • 2016
  • Concrete bridges with corrugated steel webs and prestressed by both internal and external tendons have emerged as one of the promising bridge forms. In view of the different behaviour of components and the large shear deformation of webs with negligible flexural stiffness, the assumption that plane sections remain plane may no longer be valid, and therefore the classical Euler-Bernoulli and Timoshenko beam models may not be applicable. In the design of this type of bridges, both the ultimate load and ductility should be examined, which requires the estimation of full-range behaviour. An analytical sandwich beam model and its corresponding beam finite element model for geometric and material nonlinear analysis are developed for this type of bridges considering the diaphragm effects. Different rotations are assigned to the flanges and corrugated steel webs to describe the displacements. The model accounts for the interaction between the axial and flexural deformations of the beam, and uses the actual stress-strain curves of materials considering their stress path-dependence. With a nonlinear kinematical theory, complete description of the nonlinear interaction between the external tendons and the beam is obtained. The numerical model proposed is verified by experiments.