• Title/Summary/Keyword: Euler-Bernoulli Theory

Search Result 303, Processing Time 0.02 seconds

Nonlinear Dynamic Analysis of a Large Deformable Beam Using Absolute Nodal Coordinates

  • Jong-Hwi;Il-Ho;Tae-Won
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.4
    • /
    • pp.50-60
    • /
    • 2004
  • A very flexible beam can be used to model various types of continuous mechanical parts such as cables and wires. In this paper, the dynamic properties of a very flexible beam, included in a multibody system, are analyzed using absolute nodal coordinates formulation, which is based on finite element procedures, and the general continuum mechanics theory to represent the elastic forces. In order to consider the dynamic interaction between a continuous large deformable beam and a rigid multibody system, a combined system equations of motion is derived by adopting absolute nodal coordinates and rigid body coordinates. Using the derived system equation, a computation method for the dynamic stress during flexible multibody simulation is presented based on Euler-Bernoulli beam theory, and its reliability is verified by a commercial program NASTRAN. This method is significant in that the structural and multibody dynamics models can be unified into one numerical system. In addition, to analyze a multibody system including a very flexible beam, formulations for the sliding joint between a very deformable beam and a rigid body are derived using a non-generalized coordinate, which has no inertia or forces associated with it. In particular, a very flexible catenary cable on which a multibody system moves along its length is presented as a numerical example.

Non-linear Vibration Analysis for the In-plane Motion of a Semi-circular Pipe Conveying Fluid (유체를 수송하는 반원형 곡선관의 면내운동에 대한 비선형 진동 해석)

  • 정두한;정진태
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.677-682
    • /
    • 2003
  • The non-linear dynamic characteristics of a semi-circular pipe conveying fluid are investigated when the pipe is clamped at both ends. To consider the geometric non-linearity for the radial and circumferential displacements, this study adopts the Lagrange strain theory for large deformation and the extensible dynamics based on the Euler-Bernoulli beam theory for slenderness assumption. By using the Hamilton principle, the non-linear partial differential equations are derived for the in-plane motions of the pipe, considering the fluid inertia forces as a kind of non-conservative forces. The linear and non-linear terms in the governing equations are compared with those in the previous study, and some significant differences are discussed. To investigate the dynamic characteristics of the system, the discretized equations of motion are derived form the Galerkin method. The natural frequencies varying with the flow velocity are computed fen the two cases, which one is the linear problem and the other is the linearized problem in the neighborhood of the equilibrium position. Finally, the time responses at various flow velocities are directly computed by using the generalized- method. From these results, we should to describe the non-linear behavior to analyze dynamics of a semi-circular pipe conveying fluid more precisely.

  • PDF

New Non-linear Modelling for Vibration Analysis of Straight Pipe Conveying Fluid (유체 유동을 갖는 직선관의 진동 해석을 위해 새로운 비선형 모델링)

  • Lee, Soo-Il;Chung, Jin-Tai;Im, Hyung-Bin
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.372-377
    • /
    • 2001
  • A new non-linear of a straight pipe conveying fluid is presented for vibration analysis when the pipe is fixed at both ends. Using the Euler-Bernoulli beam theory and the non-linear Lagrange strain theory, from the extended Hamilton's principle are derived the coupled non-linear equations of motion for the longitudinal and transverse displacements. These equations of motion for are discretized by using the Galerkin method. After the discretized equations are linearized in the neighbourhood of the equilibrium position, the natural frequencies are computed from the linearized equations. On the other hand, the time histories for the displacements are also obtained by applying the $generalized-{\alpha}$ time integration method to the non-linear discretized equations. The validity of the new modeling is provided by comparing results from the proposed non-linear equations with those from the equations proposed by $Pa{\ddot{i}}dousis$.

  • PDF

On the static stability of nonlocal nanobeams using higher-order beam theories

  • Eltaher, M.A.;Khater, M.E.;Park, S.;Abdel-Rahman, E.;Yavuz, M.
    • Advances in nano research
    • /
    • v.4 no.1
    • /
    • pp.51-64
    • /
    • 2016
  • This paper investigates the effects of thermal load and shear force on the buckling of nanobeams. Higher-order shear deformation beam theories are implemented and their predictions of the critical buckling load and post-buckled configurations are compared to those of Euler-Bernoulli and Timoshenko beam theories. The nonlocal Eringen elasticity model is adopted to account a size-dependence at the nano-scale. Analytical closed form solutions for critical buckling loads and post-buckling configurations are derived for proposed beam theories. This would be helpful for those who work in the mechanical analysis of nanobeams especially experimentalists working in the field. Results show that thermal load has a more significant impact on the buckling behavior of simply-supported beams (S-S) than it has on clamped-clamped (C-C) beams. However, the nonlocal effect has more impact on C-C beams that it does on S-S beams. Moreover, it was found that the predictions obtained from Timoshenko beam theory are identical to those obtained using all higher-order shear deformation theories, suggesting that Timoshenko beam theory is sufficient to analyze buckling in nanobeams.

Analytic responses of slender beams supported by rotationally restrained hinges during support motions

  • Ryu, Jeong Yeon;Kim, Yong-Woo
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2939-2948
    • /
    • 2020
  • This paper presents an analytic solution procedure of the rotationally restrained hinged-hinged beam subjected to transverse motions at supports based on EBT (Euler-Bernoulli beam theory). The EBT solutions are compared with the solutions based on TBT (Timoshenko beam theory) for a wide range of the rotational restraint parameter (kL/EI) of slender beams whose slenderness ratio is greater than 100. The comparison shows the followings. The internal loads such as bending moment and shearing force of an extremely thin beam obtained by EBT show a good agreement with those obtained by TBT. But the discrepancy between two solutions of internal loads tends to increase as the slenderness ratio decreases. A careful examination shows that the discrepancy of the internal loads originates from their dynamic components whereas their static components show a little difference between EBT and TBT. This result suggests that TBT should be employed even for slender beams to consider the rotational effect and the shear deformation effect on dynamic components of the internal loads. The influence of the parameter on boundary conditions is examined by manipulating the spring stiffness from zero to a sufficiently large value.

Nonlinear self-induced vibration and operability envelope analysis of production strings in marine natural gas development

  • Liu, Kang;Chen, Guoming;Zhu, Gaogeng;Zhu, Jingyu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.344-352
    • /
    • 2019
  • Marine production strings are continuously affected by unstable internal fluid during operation. In this paper, the structural governing equation for marine production string self-induced vibration is constructed. A finite element analysis model is established based on Euler-Bernoulli theory and solved by the Newmark method. Furthermore, based on reliability theory, a self-design procedure is developed to determine the operability envelope for marine production string self-induced vibration. Case studies show: the response frequency of the production strings is consistent with the excitation frequency under harmonic fluctuation and mainly determined by the first-order natural frequency under stochastic fluctuation. The operability envelope for marine production string self-induced vibration is a near symmetrical trapezium. With the increasing of natural gas output, the permissible fluctuation coefficient dramatically decreases. A reasonable centralizer spacing, increasing top tension, and controlling natural gas output are of great significance to the risk control in marine production string operation.

On bending analysis of perforated microbeams including the microstructure effects

  • Abdelrahman, Alaa A.;Abd-El-Mottaleb, Hanaa E.;Eltaher, Mohamed A.
    • Structural Engineering and Mechanics
    • /
    • v.76 no.6
    • /
    • pp.765-779
    • /
    • 2020
  • This article presents a nonclassical size dependent model based on the modified couple stress theory to study and analyze the bending behavior of perforated microbeams under different loading patterns. Modified equivalent material and geometrical parameters for perforated beam are presented. The modified couple stress theory with one material length scale parameter is adopted to incorporate the microstructure effect into the governing equations of perforated beam structure. The governing equilibrium equations of the perforated Timoshenko as well as the perforated Euler Bernoulli are developed based on the potential energy minimization principle. The Poisson's effect is included in the governing equilibrium equations. Regular square perforation configuration is considered. Based on Fourier series expansion, closed forms for the bending deflection and the rotational displacements are obtained for simply supported perforated microbeams. The proposed methodology is validated and compared with the available results in the literature and an excellent agreement is detected. Numerical results demonstrated the applicability of the proposed methodology to investigate the bending behavior of regularly squared perforated beams incorporating microstructure effect under different excitation patterns. The obtained results are significantly important for the design and production of perforated microbeam structures.

Size-dependent nonlinear pull-in instability of a bi-directional functionally graded microbeam

  • Rahim Vesal;Ahad Amiri
    • Steel and Composite Structures
    • /
    • v.52 no.5
    • /
    • pp.501-513
    • /
    • 2024
  • Two-directional functionally graded materials (2D-FGMs) show extraordinary physical properties which makes them ideal candidates for designing smart micro-switches. Pull-in instability is one of the most critical challenges in the design of electrostatically-actuated microswitches. The present research aims to bridge the gap in the static pull-in instability analysis of microswitches composed of 2D-FGM. Euler-Bernoulli beam theory with geometrical nonlinearity effect (i.e. von-Karman nonlinearity) in conjunction with the modified couple stress theory (MCST) are employed for mathematical formulation. The micro-switch is subjected to electrostatic actuation with fringing field effect and Casimir force. Hamilton's principle is utilized to derive the governing equations of the system and corresponding boundary conditions. Due to the extreme nonlinear coupling of the governing equations and boundary conditions as well as the existence of terms with variable coefficients, it was difficult to solve the obtained equations analytically. Therefore, differential quadrature method (DQM) is hired to discretize the obtained nonlinear coupled equations and non-classical boundary conditions. The result is a system of nonlinear coupled algebraic equations, which are solved via Newton-Raphson method. A parametric study is then implemented for clamped-clamped and cantilever switches to explore the static pull-in response of the system. The influences of the FG indexes in two directions, length scale parameter, and initial gap are discussed in detail.

Three-Dimensional Vibration Analysis of Deep, Nonlinearly Tapered Rods and Beams with Circular Cross-Section (원형단면의 깊은 비선형 테이퍼 봉과 보의 3차원 진동해석)

  • 심현주;강재훈
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.3
    • /
    • pp.251-260
    • /
    • 2003
  • A three dimensional (3-D) method of analysis is presented for determining the free vibration frequencies and mode shapes of deep, tapered rods and beams with circular cross section. Unlike conventional rod and beam theories, which are mathematically one-dimensional (1-D), the present method is based upon the 3-D dynamic equations of elasticity. Displacement components u/sup r/, u/sub θ/ and u/sub z/, in the radial, circumferential, and axial directions, respectively, are taken to be sinusoidal in time, periodic in , and algebraic polynomials in the r and z directions. Potential (strain) and kinetic energies of the rods and beams are formulated, the Ritz method is used to solve the eigenvalue problem, thus yielding upper bound values of the frequencies by minimizing the frequencies. As the degree of the polynomials is increased, frequencies converge to the exact values. Convergence to four-digit exactitude is demonstrated for the first five frequencies of the rods and beams. Novel numerical results are tabulated for nine different tapered rods and beams with linear, quadratic, and cubic variations of radial thickness in the axial direction using the 3D theory. Comparisons are also made with results for linearly tapered beams from 1-D classical Euler-Bernoulli beam theory.

The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory

  • Benmansour, Djazia Leila;Kaci, Abdelhakim;Bousahla, Abdelmoumen Anis;Heireche, Houari;Tounsi, Abdelouahed;Alwabli, Afaf S.;Alhebshi, Alawiah M.;Al-ghmady, Khalid;Mahmoud, S.R.
    • Advances in nano research
    • /
    • v.7 no.6
    • /
    • pp.443-457
    • /
    • 2019
  • In this investigation, dynamic and bending behaviors of isolated protein microtubules are analyzed. Microtubules (MTs) can be considered as bio-composite structures that are elements of the cytoskeleton in eukaryotic cells and posses considerable roles in cellular activities. They have higher mechanical characteristics such as superior flexibility and stiffness. In the modeling purpose of microtubules according to a hollow beam element, a novel single variable sinusoidal beam model is proposed with the conjunction of modified strain gradient theory. The advantage of this model is found in its new displacement field involving only one unknown as the Euler-Bernoulli beam theory, which is even less than the Timoshenko beam theory. The equations of motion are constructed by considering Hamilton's principle. The obtained results are validated by comparing them with those given based on higher shear deformation beam theory containing a higher number of variables. A parametric investigation is established to examine the impacts of shear deformation, length scale coefficient, aspect ratio and shear modulus ratio on dynamic and bending behaviors of microtubules. It is remarked that when length scale coefficients are almost identical of the outer diameter of MTs, microstructure-dependent behavior becomes more important.