• Title/Summary/Keyword: Euler-Bernoulli Theory

Search Result 303, Processing Time 0.02 seconds

Free Vibrations of Tapered Beams with General Boundary Condition at One End and Mass at the Other End (일단은 일반적인 지지조건을 갖고 타단은 집중질량을 갖는 변단면 보의 자유진동)

  • 오상진;이병구;이태은
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.493-500
    • /
    • 2001
  • The purpose of this paper is to investigate the natural frequencies and mode shapes of tapered beams with general boundary condition(translational and rotational elastic support) at one end and carrying a tip mass with translational elastic support at the other end. The beam model is based on the classical Bernoulli-Euler beam theory which neglects the effects of rotatory inertia and shear deformation. The governing differential equation for the free vibrations of linearly tapered beams is solved numerically using the corresponding boundary conditions. Numerical results are compared with existing solutions by other methods for cases in which they are available. The lowest three natural frequencies and the corresponding mode shapes are calculated over a wide range of section ratio, dimensionless spring constant, and mass ratio.

  • PDF

Stability of Cantilever-Type Columns under Nonconservative Load (비보존력이 작용하는 캔틸레버형 기둥의 안정성)

  • 오상진;이병구;최규문
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.244-251
    • /
    • 2002
  • The purpose of this paper is to investigate the stability of tapered columns with general boundary condition(translational and rotational elastic support) at one end and carrying a tip mass of rotatory inertia with translational elastic support at the other end. The column model is based on the classical Bernoulli-Euler beam theory which neglects the effects of rotatory inertia and shear deformation. The governing differential equation for the free vibrations of linearly tapered columns subjected to a subtangential follower force is solved numerically using the corresponding boundary conditions. And the bisection method is used to calculate the critical divergence/flutter load. After having verified the results of the present study, the frequency and critical divergence/flutter load are presented as functions of various nondimensional system parameters.

  • PDF

Non-Linear Behavior of Shear Deformable Variable-Arc-Length Beams (전단변형을 고려한 변화곡선길이보의 비선형 거동)

  • 이병구;이태은;김종웅;김영일
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.146-153
    • /
    • 2001
  • In this paper, the governing differential equations for the non-linear behavior of shear deformable variable-arc-length beams subjected to an end moment are derived. The beam model is based on the Bernoulli-Euler beam theory. The Runge-Kutta and Regula-Falsi methods, respectively, are used to integrate the governing differential equations and to compute the beam's rotation at the left end of the beams. Numerical results are compared with existing closed-form and numerical solutions by other methods for cases in which they are available. The characteristic values of deflection curves for various load parameters are calculated and discussed.

  • PDF

Free Vibrations of Columns Immersed in Fluid (유체에 담긴 기둥의 자유진동)

  • 오상진;이병구;모정만
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.225-230
    • /
    • 1999
  • The purpose of this paper is to investigate the natural frequencies and mode shape of columns immersed in fluid. The beam model is based on the classical Bernoulli-Euler beam theory which neglects the effects of rotatory inertial and shear deformation. The eccentricity and rotatory inerital of the tip mass are taken into account . The governing differential equations forr the free vibrations of immersed columns are solved numerically using the corresponding boundary conditoins. The lowest four natural frequencies and corresponding mode shapes are calculated over a range of non-dimensional system parameters : the ratio of fluid depth to span length, the mass ratio, the dimensionless mass moment of inertial, and the eccentricity.

  • PDF

Sound Radiation From Infinite Beams Under the Action of Harmonic Point Forces (조화집중하중을 받는 무한보에서의 음향방사)

  • 김병삼;홍동표
    • Journal of KSNVE
    • /
    • v.2 no.1
    • /
    • pp.33-39
    • /
    • 1992
  • The problem of sound radiation from infinite elastic beams under the action of harmonic point forces is studied. The reaction due to fluid loading on the vibratory response of the beam is taken into account. The beam is assumed to occupy the plane z = 0 and to be axially infinite. The beam material and the elastic foundation re assumed to be lossless and Bernoulli-Euler beam theory including a tension force (T), damping coefficient (C) and stiffness of foundation $(\kappa_s)$ will be employed. The non-dimensional sound power is derived through integration of the surface intensity distribution over the entire beam. The expression for sound power is integrated numerically and the results are examined as a function of wavenumber ratio$(\gamma)$ and stiffness factor$(\Psi)$. Here, our purpose is to explain the response of sound power over a number of non-dimensional parameters describing tension, stiffness, damping and foundation stiffness.

  • PDF

Sound Radiation From Infinite Beams Under the Action of Harmonic Moving Line Forces (조화분포이동하중을 받는 무한보에서의 음향방사)

  • 김병삼;이태근;홍동표
    • Journal of KSNVE
    • /
    • v.3 no.3
    • /
    • pp.245-251
    • /
    • 1993
  • The problem of sound radiation from infinite elastic beams under the action on harmonic moving line forces is studies. The reaction due to fluid loading on the vibratory response of the beam is taken into account. The beam is assumed to occupy the plane z=0 and to be axially infinite. The beam material and elastic foundation are assumed to be lossless and Bernoulli-Euler beam theory including a tension force (T), damping coefficient (C) and stiffness of foundation $(\kappa_s)$ will be employed. The non-dimensional sound power is derived through integration of the surface intensity distribution over the entire beam. The expression for sound power is integrated numerically and the results examined as a function of Mach number (M), wavenumber ratio$(\gamma{)}$ and stiffness factor $(\Psi{)}$. Here, our purpose is to explain the response of sound power over a number of non-dimensional parameters describing tension, stiffness, damping and foundation stiffness.

  • PDF

Free Vibrations of Generally Restrained Beams (일반적인 단부조건을 갖는 보의 자유진동)

  • 신성철;김봉규;안대순;김선기
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.864-869
    • /
    • 2003
  • The purpose of this paper is to investigate the free vibration characteristics of tapered beams with translational and rotational springs and point masses at the ends. The beam model is based on the classical Bernoulli-Euler beam theory which neglects the effects of rotatory inertia and shear deformation. The governing differential equation for the free vibrations of linearly tapered beams is solved numerically using the corresponding boundary conditions. Numerical results are compared with existing solutions by other methods for cases in which they are available. The lowest four natural frequencies are calculated over a range of non-dimensional system parameters.

  • PDF

Dynamic Behavior of a Simply Supported Fluid Flow Pipe with a Crack (크랙을 가진 유체유동 파이프의 동특성 해석)

  • 유진석;손인수;윤한익
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.689-694
    • /
    • 2003
  • An iterative modal analysis approach is developed to determine the effect of transverse open cracks on the dynamic behavior of simply supported pipe conveying fluid subject to the moving mass. The equation of motion is derived by using Lagrange's equation. The influences of the velocity of moving mass and the velocity of fluid flow and a crack have been studied on the dynamic behavior of a simply supported pipe system by numerical method. The presence of crack results in higher deflections of pipe. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments i.e. the crack is modelled as a rotational spring. Totally, as the velocity of fluid flow and the crack severity are increased, the mid-span deflection of simply supported pipe conveying fluid is increased. The time which produce the maximum dynamic deflection of the simply supported pipe is delayed according to the increment of the crack severity.

  • PDF

An analytical study on the nonlinear vibration of a double-walled carbon nanotube

  • Hajnayeb, Ali;Khadem, S.E.
    • Structural Engineering and Mechanics
    • /
    • v.54 no.5
    • /
    • pp.987-998
    • /
    • 2015
  • In this paper, free vibrations of a clamped-clamped double-walled carbon nanotube (DWNT) under axial force is studied. By utilizing Euler-Bernoulli beam theory, each layer of DWNT is modeled as a beam. In this analysis, nonlinear form of interlayer van der Waals (vdW) forces and nonlinearities aroused from mid-plane stretching are also considered in the equations of motion. Further, direct application of multiple scales perturbation method is utilized to solve the obtained equations and to analyze free vibrations of the DWNT. Therefore, analytical expressions are found for vibrations of each layer. Linear and nonlinear natural frequencies of the system and vibration amplitude ratios of inner to outer layers are also obtained. Finally, the results are compared with the results obtained by Galerkin method.

Numerical modelling of nonlinear behaviour of prestressed concrete continuous beams

  • Lou, Tiejiong;Lopes, Sergio M.R.;Lopes, Adelino V.
    • Computers and Concrete
    • /
    • v.15 no.3
    • /
    • pp.373-389
    • /
    • 2015
  • The development of a finite element model for the geometric and material nonlinear analysis of bonded prestressed concrete continuous beams is presented. The nonlinear geometric effect is introduced by the coupling of axial and flexural fields. A layered approach is applied so as to consider different material properties across the depth of a cross section. The proposed method of analysis is formulated based on the Euler-Bernoulli beam theory. According to the total Lagrangian description, the constructed stiffness matrix consists of three components, namely, the material stiffness matrix reflecting the nonlinear material effect, the geometric stiffness matrix reflecting the nonlinear geometric effect and the large displacement stiffness matrix reflecting the large displacement effect. The analysis is capable of predicting the nonlinear behaviour of bonded prestressed concrete continuous beams over the entire loading stage up to failure. Some numerical examples are presented to demonstrate the validity and applicability of the proposed model.