• Title/Summary/Keyword: Euler-Bernoulli Theory

Search Result 303, Processing Time 0.032 seconds

Dynamic stiffness matrix method for axially moving micro-beam

  • Movahedian, Bashir
    • Interaction and multiscale mechanics
    • /
    • v.5 no.4
    • /
    • pp.385-397
    • /
    • 2012
  • In this paper the dynamic stiffness matrix method was used for the free vibration analysis of axially moving micro beam with constant velocity. The extended Hamilton's principle was employed to derive the governing differential equation of the problem using the modified couple stress theory. The dynamic stiffness matrix of the moving micro beam was evaluated using appropriate expressions of the shear force and bending moment according to the Euler-Bernoulli beam theory. The effects of the beam size and axial velocity on the dynamic characteristic of the moving beam were investigated. The natural frequencies and critical velocity of the axially moving micro beam were also computed for two different end conditions.

Nondestructive damage evaluation of deep beams

  • Dincal, Selcuk;Stubbs, Norris
    • Structural Monitoring and Maintenance
    • /
    • v.4 no.3
    • /
    • pp.269-299
    • /
    • 2017
  • This paper presents a Level III damage evaluation methodology, which simultaneously, identifies the location, the extent, and the severity of stiffness damage in deep beams. Deep beams are structural elements with relatively high aspect (depth-to-length) ratios whose response are no longer based on the simplified Euler-Bernoulli theory. The proposed methodology is developed on the bases of the force-displacement relations of the Timoshenko beam theory and the concept of invariant stress resultants, which states that the net internal force existing at any cross-section of the beam is not affected by the inflicted damage, provided that the external loadings in the undamaged and damaged beams are identical. Irrespective of the aspect ratios, local changes in both the flexural and the shear stiffnesses of beam-type structures may be detected using the approach presented in this paper.

구조 형태에 따른 1차원 보와 2차원 평판 구조 해석 비교

  • Gang, Yu-Jin;Sim, Ji-Su
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.274-278
    • /
    • 2015
  • There are different kinds of aircrafts, such as conventional airplane, rotorcraft, fighter, and unmanned aerial vehicle. Their shape and feature are dependent upon their assigned mission. One of the fundamental analyses during the design of the aircraft is the structural analysis. The structural analysis becomes more complicated and needs more computations because of the on-going complex aircrafts' structure. In order for efficiency in the structural analysis, a simplified approach, such as equivalent beam or plate model, is preferred. However, it is not clear which analysis will be appropriate to analyze the realistic configuration, i.e., an equivalent beam or plate analysis for an aircraft wing. It is necessary to assess the boundary between the one-dimensional beam analysis and the two-dimensional plate theory for an accurate structural analysis. Thus, in this paper, the static structural analysis results obtained by EDISON solvers were compared with the three-dimesional results obtained from MSC NASTRAN. Before that, EDISON program was verified by comparing the results with those from MSC NASTRAN program and analytic solution.

  • PDF

Analyses of tapered fgm beams with nonlocal theory

  • Pradhan, S.C.;Sarkar, A.
    • Structural Engineering and Mechanics
    • /
    • v.32 no.6
    • /
    • pp.811-833
    • /
    • 2009
  • In the present article bending, buckling and vibration analyses of tapered beams using Eringen non-local elasticity theory are being carried out. The associated governing differential equations are solved employing Rayleigh-Ritz method. Both Euler-Bernoulli and Timoshenko beam theories are considered in the analyses. Present results are in good agreement with those reported in literature. Beam material is considered to be made up of functionally graded materials (fgms). Non-local analyses for tapered beam with simply supported - simply supported, clamped - simply supported and clamped - free boundary conditions are carried out and discussed. Further, effect of length to height ratio on maximum deflections, vibration frequencies and critical buckling loads are studied.

Nonlinear free and forced vibration analysis of microbeams resting on the nonlinear orthotropic visco-Pasternak foundation with different boundary conditions

  • Arani, Ali Ghorbanpour;Kiani, Farhad
    • Steel and Composite Structures
    • /
    • v.28 no.2
    • /
    • pp.149-165
    • /
    • 2018
  • Using the modified couple stress theory and Euler-Bernoulli beam theory, this paper studies nonlinear vibration analysis of microbeams resting on the nonlinear orthotropic visco-Pasternak foundation. Using the Hamilton's principle, the set of the governing equations are derived and solved numerically using differential quadrature method (DQM), Newark beta method and arc-length technique for all kind of the boundary conditions. First convergence and accuracy of the presented solution are demonstrated and then effects of radius of gyration, Poisson's ratio, small scale parameters, temperature changes and coefficients of the foundation on the linear and nonlinear natural frequencies and dynamic response of the microbeam are investigated.

Analytical solutions for bending of transversely or axially FG nonlocal beams

  • Nguyen, Ngoc-Tuan;Kim, Nam-Il;Lee, Jaehong
    • Steel and Composite Structures
    • /
    • v.17 no.5
    • /
    • pp.641-665
    • /
    • 2014
  • This paper presents the analytical solutions for the size-dependent static analysis of the functionally graded (FG) beams with various boundary conditions based on the nonlocal continuum model. The nonlocal behavior is described by the differential constitutive model of Eringen, which enables to this model to become effective in the analysis and design of nanostructures. The elastic modulus of beam is assumed to vary through the thickness or longitudinal directions according to the power law. The governing equations are derived by using the nonlocal continuum theory incorporated with Euler-Bernoulli beam theory. The explicit solutions are derived for the static behavior of the transversely or axially FG beams with various boundary conditions. The verification of the model is obtained by comparing the current results with previously published works and a good agreement is observed. Numerical results are presented to show the significance of the nonlocal effect, the material distribution profile, the boundary conditions, and the length of beams on the bending behavior of nonlocal FG beams.

Vibration analysis of generalized thermoelastic microbeams resting on visco-Pasternak's foundations

  • Zenkour, Ashraf M.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.3
    • /
    • pp.269-280
    • /
    • 2017
  • The natural vibration analysis of microbeams resting on visco-Pasternak's foundation is presented. The thermoelasticity theory of Green and Naghdi without energy dissipation as well as the classical Euler-Bernoulli's beam theory is used for description of natural frequencies of the microbeam. The generalized thermoelasticity model is used to obtain the free vibration frequencies due to the coupling equations of a simply-supported microbeam resting on the three-parameter viscoelastic foundation. The fundamental frequencies are evaluated in terms of length-to-thickness ratio, width-to-thickness ratio and three foundation parameters. Sample natural frequencies are tabulated and plotted for sensing the effect of all used parameters and to investigate the visco-Pasternak's parameters for future comparisons.

Nonlinear vibration and stability of FG nanotubes conveying fluid via nonlocal strain gradient theory

  • Dang, Van-Hieu;Sedighi, Hamid M.;Chan, Do Quang;Civalek, Omer;Abouelregal, Ahmed E.
    • Structural Engineering and Mechanics
    • /
    • v.78 no.1
    • /
    • pp.103-116
    • /
    • 2021
  • In this work, a model of a functionally graded (FG) nanotube conveying fluid embedded in an elastic medium is developed based on the nonlocal strain gradient theory (NSGT) in conjunction with Euler-Bernoulli beam theory (EBT). The main objective of this research is to investigate the nonlinear vibration and stability analysis of fluid-conveying nanotubes. The governing equations of motion are derived by means of Hamiltonian principle. The analytical expressions of nonlinear frequencies and critical flow velocities for two different types of boundary conditions including pinned-pinned (P-P) and clamped-clamped (C-C) conditions are obtained by employing Galerkin method as well as Hamiltonian Approach (HA). Comparison of the obtained results with the published works show the acceptable accuracy of the current solutions. The effects of the power-law index, the nonlocal and material length scale parameters and the elastic medium on the stability and nonlinear responses of FG nanotubes are thoroughly investigated and discussed.

A new solution for dynamic response of FG nonlocal beam under moving harmonic load

  • Hosseini, S.A.H.;Rahmani, O.;Bayat, S.
    • Steel and Composite Structures
    • /
    • v.43 no.2
    • /
    • pp.185-200
    • /
    • 2022
  • A Closed-form solution for dynamic response of a functionally graded (FG) nonlocal nanobeam due to action of moving harmonic load is presented in this paper. Due to analyzing in small scale, a nonlocal elasticity theory is utilized. The governing equation and boundary conditions are derived based on the Euler-Bernoulli beam theory and Hamilton's principle. The material properties vary through the thickness direction. The harmonic moving load is modeled by Delta function and the FG nanobeam is simply supported. Using the Laplace transform the dynamic response is obtained. The effect of important parameters such as excitation frequency, the velocity of the moving load, the power index law of FG material and the nonlocal parameter is analyzed. To validate, the results were compared with previous literature, which showed an excellent agreement.

Semi-analytical stability behavior of composite concrete structures via modified non-classical theories

  • Luxin He;Mostafa Habibi;Majid Khorami
    • Advances in concrete construction
    • /
    • v.17 no.4
    • /
    • pp.187-210
    • /
    • 2024
  • Cantilever structures demonstrate diverse nonlocal effects, resulting in either stiffness hardening or dynamic softening behaviors, as various studies have indicated. This research delves into the free and forced vibration analysis of rotating nanoscale cylindrical beams and tubes under external dynamic stress, aiming to thoroughly explore the nonlocal impact from both angles. Utilizing Euler-Bernoulli and Reddy beam theories, in conjunction with higher-order tube theory and Hamilton's principle, nonlocal governing equations are derived with precise boundary conditions for both local and nonlocal behaviors. The study specifically examines two-dimensional functionally graded materials (2D-FGM), characterized by axially functionally graded (AFG) and radial porosity distributions. The resulting partial differential equations are solved using the generalized differential quadrature element method (GDQEM) and Newmark-beta procedures to acquire time-dependent results. This investigation underscores the significant influence of boundary conditions when nonlocal forces act on cantilever structures.