• 제목/요약/키워드: Euler functions

검색결과 165건 처리시간 0.024초

전달행렬법을 사용한 크랭크축의 3차원 진동해석 (The Transfer Matrix Method for Three-Dimensional Vibration Analysis of Crank Shaft)

  • 이정윤;오재응
    • 한국자동차공학회논문집
    • /
    • 제5권4호
    • /
    • pp.152-159
    • /
    • 1997
  • This paper presents a vibration analysis method of crank shaft of six cylinder internal combustion engine. For simple analysis journal, pin and arm parts were assumed to have uniform section. Transfer Matrix Method was used, considering branched part and coordinate transformation part. Natural frequencies, modeshapes and transfer functions of crank shaft were investigated based upon the Euler beam theory: It was shown that the calculated natural frequencies, modeshapes agree well with the existing paper results.

  • PDF

SERIES REPRESENTATIONS FOR THE EULER-MASCHERONI CONSTANT $\gamma$

  • Choi, June-Sang;Seo, Tae-Young
    • East Asian mathematical journal
    • /
    • 제18권1호
    • /
    • pp.75-84
    • /
    • 2002
  • The third important Euler-Mascheroni constant $\gamma$, like $\pi$ and e, is involved in representations, evaluations, and purely relationships among other mathematical constants and functions, in various ways. The main object of this note is to summarize some known series representaions for $\gamma$ with comments for their proofs, and to point out that one of those series representaions for $\gamma$ seems to be incorrectly recorded. A brief historical comment for $\gamma$ is also provided.

  • PDF

SYMMETRIC IDENTITIES OF THE DEGENERATE MODIFIED q-EULER POLYNOMIALS UNDER THE SYMMETRIC GROUP

  • Kwon, Jongkyum;Pyo, Sung-Soo
    • 호남수학학술지
    • /
    • 제40권4호
    • /
    • pp.671-679
    • /
    • 2018
  • Abstract of the article can be written hereAbstract of the article can be written here. Recently, several authors have studied the symmetric identities for special functions(see [3,5-11,14,17,18,20-22]). In this paper, we study the symmetric identities of the degenerate modified q-Euler polynomials under the symmetric group.

THE INCOMPLETE GENERALIZED τ-HYPERGEOMETRIC AND SECOND τ-APPELL FUNCTIONS

  • Parmar, Rakesh Kumar;Saxena, Ram Kishore
    • 대한수학회지
    • /
    • 제53권2호
    • /
    • pp.363-379
    • /
    • 2016
  • Motivated mainly by certain interesting recent extensions of the generalized hypergeometric function [Integral Transforms Spec. Funct. 23 (2012), 659-683] and the second Appell function [Appl. Math. Comput. 219 (2013), 8332-8337] by means of the incomplete Pochhammer symbols $({\lambda};{\kappa})_{\nu}$ and $[{\lambda};{\kappa}]_{\nu}$, we introduce here the family of the incomplete generalized ${\tau}$-hypergeometric functions $2{\gamma}_1^{\tau}(z)$ and $2{\Gamma}_1^{\tau}(z)$. The main object of this paper is to study these extensions and investigate their several properties including, for example, their integral representations, derivative formulas, Euler-Beta transform and associated with certain fractional calculus operators. Further, we introduce and investigate the family of incomplete second ${\tau}$-Appell hypergeometric functions ${\Gamma}_2^{{\tau}_1,{\tau}_2}$ and ${\gamma}_2^{{\tau}_1,{\tau}_2}$ of two variables. Relevant connections of certain special cases of the main results presented here with some known identities are also pointed out.

GENERALIZED EULER POWER SERIES

  • KIM, MIN-SOO
    • Journal of applied mathematics & informatics
    • /
    • 제38권5_6호
    • /
    • pp.591-600
    • /
    • 2020
  • This work is a continuation of our investigations for p-adic analogue of the alternating form Dirichlet L-functions $$L_E(s,{\chi})={\sum\limits_{n=1}^{\infty}}{\frac{(-1)^n{\chi}(n)}{n^s}},\;Re(s)>0$$. Let Lp,E(s, t; χ) be the p-adic Euler L-function of two variables. In this paper, for any α ∈ ℂp, |α|p ≤ 1, we give a power series expansion of Lp,E(s, t; χ) in terms of the variable t. From this, we derive a power series expansion of the generalized Euler polynomials with negative index, that is, we prove that $$E_{-n,{\chi}}(t)={\sum\limits_{m=0}^{\infty}}\(\array{-n\\m}\)E_{-(m+n),{\chi}^{t^m}},\;n{\in}{\mathbb{N}}$$, where t ∈ ℂp with |t|p < 1. Some further properties for Lp,E(s, t; χ) has also been shown.

On Certain Integral Transforms Involving Hypergeometric Functions and Struve Function

  • Singhal, Vijay Kumar;Mukherjee, Rohit
    • Kyungpook Mathematical Journal
    • /
    • 제56권4호
    • /
    • pp.1169-1177
    • /
    • 2016
  • This paper is devoted to the study of Mellin, Laplace, Euler and Whittaker transforms involving Struve function, generalized Wright function and Fox's H-function. The main results are presented in the form of four theorems. On account of the general nature of the functions involved here in, the main results obtained here yield a large number of known and new results in terms of simpler functions as their special cases. For the sake of illustration some corollaries have been recorded here as special cases of our main findings.

A NOTE ON RECURRENCE FORMULA FOR VALUES OF THE EULER ZETA FUNCTIONS ζE(2n) AT POSITIVE INTEGERS

  • Lee, Hui Young;Ryoo, Cheon Seoung
    • 대한수학회보
    • /
    • 제51권5호
    • /
    • pp.1425-1432
    • /
    • 2014
  • The Euler zeta function is defined by ${\zeta}_E(s)=\sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{n^8}$. The purpose of this paper is to find formulas of the Euler zeta function's values. In this paper, for $s{\in}\mathbb{N}$ we find the recurrence formula of ${\zeta}_E(2s)$ using the Fourier series. Also we find the recurrence formula of $\sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{(2_{n-1})^{2s-1}}$, where $s{\geq}2({\in}\mathbb{N})$.

Tailoring the second mode of Euler-Bernoulli beams: an analytical approach

  • Sarkar, Korak;Ganguli, Ranjan
    • Structural Engineering and Mechanics
    • /
    • 제51권5호
    • /
    • pp.773-792
    • /
    • 2014
  • In this paper, we study the inverse mode shape problem for an Euler-Bernoulli beam, using an analytical approach. The mass and stiffness variations are determined for a beam, having various boundary conditions, which has a prescribed polynomial second mode shape with an internal node. It is found that physically feasible rectangular cross-section beams which satisfy the inverse problem exist for a variety of boundary conditions. The effect of the location of the internal node on the mass and stiffness variations and on the deflection of the beam is studied. The derived functions are used to verify the p-version finite element code, for the cantilever boundary condition. The paper also presents the bounds on the location of the internal node, for a valid mass and stiffness variation, for any given boundary condition. The derived property variations, corresponding to a given mode shape and boundary condition, also provides a simple closed-form solution for a class of non-uniform Euler-Bernoulli beams. These closed-form solutions can also be used to check optimization algorithms proposed for modal tailoring.