• Title/Summary/Keyword: Euler functions

Search Result 168, Processing Time 0.029 seconds

A novel aerodynamic vibration and fuzzy numerical analysis

  • Timothy Chen;Yahui Meng;Ruei-Yuan Wang;ZY Chen
    • Wind and Structures
    • /
    • v.38 no.3
    • /
    • pp.161-170
    • /
    • 2024
  • In recent years, there have been an increasing number of experimental studies showing the need to include robustness criteria in the design process to develop complex active control designs for practical implementation. The paper investigates the crosswind aerodynamic parameters after the blocking phase of a two-dimensional square cross-section structure by measuring the response in wind tunnel tests under light wind flow conditions. To improve the accuracy of the results, the interpolation of the experimental curves in the time domain and the analytical responses were numerically optimized to finalize the results. Due to this combined effect, the three aerodynamic parameters decrease with increasing wind speed and asymptotically affect the upper branch constants. This means that the aerodynamic parameters along the density distribution are minimal. Taylor series are utilized to describe the fuzzy nonlinear plant and derive the stability analysis using polynomial function for analyzing the aerodynamic parameters and numerical simulations. Due to it will yield intricate terms to ensure stability criterion, therefore we aim to avoid kinds issues by proposing a polynomial homogeneous framework and utilizing Euler's functions for homogeneous systems. Finally, we solve the problem of stabilization under the consideration by SOS (sum of squares) and assign its fuzzy controller based on the feasibility of demonstration of a nonlinear system as an example.

Study on the Applicability of a New Multi-body Dynamics Program Through the Application to the Heave Compensation System (상하동요 감쇠장치 적용을 통한 새로운 다물체동역학 프로그램의 적용성 검토)

  • Ku, Nam-Kug;Ha, Sol;Roh, Myung-Il
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.4
    • /
    • pp.247-254
    • /
    • 2013
  • In this paper, dynamic response analysis of a heave compensation system is performed for offshore drilling operations based on multibody dynamics. With this simulation, the efficiency of the heave compensation system can be virtually confirmed before it is applied to drilling operations. The heave compensation system installed on a semi-submersible platform consists of a passive and an active heave compensator. The passive and active heave compensator are composed of several bodies that are connected to each other with various types of joints. Therefore, to carry out the dynamic response analysis, the dynamics kernel was developed based on mutibody dynamics. To construct the equations of motion of the multibody system and to determine the unknown accelerations and constraint forces, the recursive Newton-Euler formulation was adapted. Functions of the developed dynamics kernel were verified by comparing them with other commercial dynamics kernels. The hydrostatic force with nonlinear effects, the linearized hydrodynamic force, and the pneumatic and hydraulic control forces were considered as the external forces that act on the platform of the semi-submersible rig and the heave compensation system. The dynamic simulation of the heave compensation system of the semi-submersible rig, which is available for drilling operations with a 3,600m water depth, was carried out. From the results of the simulation, the efficiency of the heave compensation system were evaluated before they were applied to the offshore drilling operations. Moreover, the calculated constraint forces could serve as reference data for the design of the mechanical system.

Improvement of Euler-Bernoulli Beam Theory for Free Vibration and Buckling Analyses via Saint-Venant's Principle (생브낭 원리를 이용한 고전 보 이론의 고유진동수 및 좌굴하중 예측 개선)

  • Jeong, Yong-Min;Kim, Jun-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.4
    • /
    • pp.381-387
    • /
    • 2016
  • In this paper, the methodology applied to the improvement of stress analyses is extended to free vibration and buckling analyses. The essence of the methodology is the Saint-Venant's principle that is applicable to beam and plate models. The principle allows one to dimensionally reduce three-dimensional elasticity problems. Thus the methodology can be employed to vibration and buckling as well as stress analysis. First, the principle is briefly revisited, and then the formations of classical beam theories are presented. To improve the predictions, the perturbed terms (unknowns) are introduced together with the warping functions that are calculated by stress equilibrium equations. The unknowns are then calculated by applying the equivalence of stress resultants (i.e., Saint-Venant's principle). As numerical examples, cantilever and simply supported beams are analytically solved. The results obtained are compared with those of the classical beam theories. It is shown that the methodology can be used to improve the predictions without introducing shear correction factors.

Pavement condition assessment through jointly estimated road roughness and vehicle parameters

  • Shereena, O.A.;Rao, B.N.
    • Structural Monitoring and Maintenance
    • /
    • v.6 no.4
    • /
    • pp.317-346
    • /
    • 2019
  • Performance assessment of pavements proves useful, in terms of handling the ride quality, controlling the travel time of vehicles and adequate maintenance of pavements. Roughness profiles provide a good measure of the deteriorating condition of the pavement. For the accurate estimates of pavement roughness from dynamic vehicle responses, vehicle parameters should be known accurately. Information on vehicle parameters is uncertain, due to the wear and tear over time. Hence, condition monitoring of pavement requires the identification of pavement roughness along with vehicle parameters. The present study proposes a scheme which estimates the roughness profile of the pavement with the use of accurate estimates of vehicle parameters computed in parallel. Pavement model used in this study is a two-layer Euler-Bernoulli beam resting on a nonlinear Pasternak foundation. The asphalt topping of the pavement in the top layer is modeled as viscoelastic, and the base course bottom layer is modeled as elastic. The viscoelastic response of the top layer is modeled with the help of the Burgers model. The vehicle model considered in this study is a half car model, fitted with accelerometers at specified points. The identification of the coupled system of vehicle-pavement interaction employs a coupled scheme of an unbiased minimum variance estimator and an optimization scheme. The partitioning of observed noisy quantities to be used in the two schemes is investigated in detail before the analysis. The unbiased minimum variance estimator (MVE) make use of a linear state-space formulation including roughness, to overcome the linearization difficulties as in conventional nonlinear filters. MVE gives estimates for the unknown input and fed into the optimization scheme to yield estimates of vehicle parameters. The issue of ill-posedness of the problem is dealt with by introducing a regularization equivalent term in the objective function, specifically where a large number of parameters are to be estimated. Effect of different objective functions is also studied. The outcome of this research is an overall measure of pavement condition.

Stability Analysis of Beck's Column with a Tip Mass Restrained by a Spring (스프링으로 지지된 자유단에 집중질량을 갖는 Beck 기둥의 안정성 해석)

  • Li, Guangfan;Oh, Sang-Jin;Kim, Gwon-Sik;Lee, Byoung-Koo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.11 s.104
    • /
    • pp.1287-1294
    • /
    • 2005
  • The purpose of this paper is to investigate free vibrations and critical loads of the Beck's columns with a tip spring, which carry a tip mass. The ordinary differential equation governing free vibrations of Beck's column subjected to a follower force is derived based on the Bernoulli-Euler beam theory Both the divergence and flutter critical loads are calculated from the load-frequency corves that are obtained by solving the differential equation numerically. The critical loads are presented in the figures as functions of various non-dimensional system parameters such as the subtangential parameter, mass ratio and spring parameter.

Plastic Hinge Modeling Based on Lumped Plasticity using a Generalized Finite Element Method (일반유한요소법을 이용한 집중소성힌지 모델링)

  • Son, Hong-Jun;Rhee, Seung-Ho;Kim, Dae-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.381-388
    • /
    • 2018
  • This paper presents a generalized finite element formulation for plastic hinge modeling based on lumped plasticity in the classical Euler-Bernoulli beam elements. In this approach, the plastic hinges are effectively modeled using proper enrichment functions describing weak discontinuities of the solution. The proposed methodology enables the insertion of plastic hinges at an arbitrary location without modifying the connectivity of elements. The formations of plastic hinges are instead achieved by hierarchically adding degrees of freedom to existing elements. Convergence analyses such as h- and p-extensions are performed to investigate the effectiveness of the proposed method. The analysis results indicate that the proposed generalized finite element method can achieve theoretical convergence rates for both cases where plastic hinges are located at nodes and within an element, thus demonstrating its accuracy.

Formulation and evaluation a finite element model for free vibration and buckling behaviours of functionally graded porous (FGP) beams

  • Abdelhak Mesbah;Zakaria Belabed;Khaled Amara;Abdelouahed Tounsi;Abdelmoumen A. Bousahla;Fouad Bourada
    • Structural Engineering and Mechanics
    • /
    • v.86 no.3
    • /
    • pp.291-309
    • /
    • 2023
  • This paper addresses the finite element modeling of functionally graded porous (FGP) beams for free vibration and buckling behaviour cases. The formulated finite element is based on simple and efficient higher order shear deformation theory. The key feature of this formulation is that it deals with Euler-Bernoulli beam theory with only three unknowns without requiring any shear correction factor. In fact, the presented two-noded beam element has three degrees of freedom per node, and the discrete model guarantees the interelement continuity by using both C0 and C1 continuities for the displacement field and its first derivative shape functions, respectively. The weak form of the governing equations is obtained from the Hamilton principle of FGP beams to generate the elementary stiffness, geometric, and mass matrices. By deploying the isoparametric coordinate system, the derived elementary matrices are computed using the Gauss quadrature rule. To overcome the shear-locking phenomenon, the reduced integration technique is used for the shear strain energy. Furthermore, the effect of porosity distribution patterns on the free vibration and buckling behaviours of porous functionally graded beams in various parameters is investigated. The obtained results extend and improve those predicted previously by alternative existing theories, in which significant parameters such as material distribution, geometrical configuration, boundary conditions, and porosity distributions are considered and discussed in detailed numerical comparisons. Determining the impacts of these parameters on natural frequencies and critical buckling loads play an essential role in the manufacturing process of such materials and their related mechanical modeling in aerospace, nuclear, civil, and other structures.

Vehicle-Bridge Interaction Analysis of Railway Bridges by Using Conventional Trains (기존선 철도차량을 이용한 철도교의 상호작용해석)

  • Cho, Eun Sang;Kim, Hee Ju;Hwang, Won Sup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1A
    • /
    • pp.31-43
    • /
    • 2009
  • In this study, the numerical method is presented, which can consider the various train types and can solve the equations of motion for a vehicle-bridge interaction analysis by non-iteration procedure through formulating the coupled equations of motion. The coupled equations of motion for the vehicle-bridge interaction are solved by the Newmark ${\beta}$ of a direct integration method, and by composing the effective stiffness matrix and the effective force vector according to a analysis step, those can be solved with the same manner of the solving procedure of equilibrium equations in static analysis. Also, the effective stiffness matrix is reconstructed by the Skyline method for increasing the analysis effectiveness. The Cholesky's matrix decomposition scheme is applied to the analysis procedure for minimizing the numerical errors that can be generated in directly calculating the inverse matrix. The equations of motion for the conventional trains are derived, and the numerical models of the conventional trains are idealized by a set of linear springs and dashpots with 16 degrees of freedom. The bridge models are simplified by the 3 dimensional space frame element which is based on the Euler-Bernoulli theory. The rail irregularities of vertical and lateral directions are generated by the PSD functions of the Federal Railroad Administration (FRA). The results of the vehicle-bridge interaction analysis are verified by the experimental results for the railway plate girder bridges of a span length with 12 m, 18 m, and the experimental and analytical data are applied to the low pass filtering scheme, and the basis frequency of the filtering is a 2 times of the 1st fundamental frequency of a bridge bending.