• 제목/요약/키워드: Euler Parameter

검색결과 140건 처리시간 0.025초

다물체의 기구해석 및 동적거동해석을 위한 오일러 매개변수의 교정방법 (An Euler Parameter Updating Method for Multibody Kinematics and Dynamics)

  • 김성주;배대성;최창곤;양성모
    • 한국자동차공학회논문집
    • /
    • 제4권4호
    • /
    • pp.9-17
    • /
    • 1996
  • This paper develops a sequential updating method of the Euler parameter generalized coordinates for the machine kinematics and dynamics, The Newton's method is slightly modified so as to utilize the Jacobian matrix with respect to the virtual rotation instead of this with repect to the Euler parameters. An intermediate variable is introduced and the modified Newton's method solves for the variable first. Relational equation of the intermediate variable is then solved for the Euler parameters. The solution process is carried out efficiently by symoblic inversion of the relational equation of the intermediate variable and the iteration equation of the Euler parameter normalization constraint. The proposed method is applied to a kinematic and dynamic analysis with the Generalized Coordinate Partitioning method. Covergence analysis is performed to guarantee the local convergence of the proposed method. To demonstrate the validity and practicalism of the proposed method, kinematic analysis of a motion base system and dynamic analysis of a vehicle are carried out.

  • PDF

오일러 매개변수를 이용한 해양 세장체 대변위 거동 해석 (Euler Parameters Method for Large Deformation Analysis of Marine Slender Structures)

  • 홍섭
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.163-167
    • /
    • 2003
  • A novel method for 3-dimensional dynamic analysis of marine slender structure gas been developed by using Euler parameters. The Euler parameter rotation, which is being widely used in aerospace vehicle dynamics and multi-body dynamics, has been applied to elastic structure analysis. Large deformation of flexible slender structures is described by means of Euler parameters. Euler parameter method is implemented effectively in incremental-iterative algorithm for 3D dynamic analysis. The normalization constraint of Euler parameters is efficiently satisfied by means of a sequential updating method.

  • PDF

Free vibration analysis Silicon nanowires surrounded by elastic matrix by nonlocal finite element method

  • Uzun, Busra;Civalek, Omer
    • Advances in nano research
    • /
    • 제7권2호
    • /
    • pp.99-108
    • /
    • 2019
  • Higher-order theories are very important to investigate the mechanical properties and behaviors of nanoscale structures. In this study, a free vibration behavior of SiNW resting on elastic foundation is investigated via Eringen's nonlocal elasticity theory. Silicon Nanowire (SiNW) is modeled as simply supported both ends and clamped-free Euler-Bernoulli beam. Pasternak two-parameter elastic foundation model is used as foundation. Finite element formulation is obtained nonlocal Euler-Bernoulli beam theory. First, shape function of the Euler-Bernoulli beam is gained and then Galerkin weighted residual method is applied to the governing equations to obtain the stiffness and mass matrices including the foundation parameters and small scale parameter. Frequency values of SiNW is examined according to foundation and small scale parameters and the results are given by tables and graphs. The effects of small scale parameter, boundary conditions, foundation parameters on frequencies are investigated.

AN IMPROVED IMPLICIT EULER METHOD FOR SOLVING INITIAL VALUE PROBLEMS

  • YUN, BEONG IN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제26권3호
    • /
    • pp.138-155
    • /
    • 2022
  • To solve the initial value problem we present a new single-step implicit method based on the Euler method. We prove that the proposed method has convergence order 2. In practice, numerical results of the proposed method for some selected examples show an error tendency similar to the second-order Taylor method. It can also be found that this method is useful for stiff initial value problems, even when a small number of nodes are used. In addition, we extend the proposed method by using weighted averages with a parameter and show that its convergence order becomes 2 for the parameter near $\frac{1}{2}$. Moreover, it can be seen that the extended method with properly selected values of the parameter improves the approximation error more significantly.

Euler 방정식에 대한 LU implicit scheme의 수렴성 해석 (Convergence Analysis of LU scheme for the Euler equations)

  • 김주성;권오준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 추계 학술대회논문집
    • /
    • pp.49-55
    • /
    • 2003
  • A comprehensive study has been made for the investigation of the convergence characteristics of the LU scheme for the Euler equations using von Neumann stability analysis. The stability results indicate that the convergence rate is governed by a specific parameter combination. Based on this insight it is shown that the LU scheme will not suffer convergence deterioration at any grid aspect ration if the local time step is defined using appropriate parameter combination. The numerical results demonstrate that this time step definition gives uniform convergence for grid aspect ratios from one to $1\times10^4$.

  • PDF

NEW SEVEN-PARAMETER MITTAG-LEFFLER FUNCTION WITH CERTAIN ANALYTIC PROPERTIES

  • Maryam K. Rasheed;Abdulrahman H. Majeed
    • Nonlinear Functional Analysis and Applications
    • /
    • 제29권1호
    • /
    • pp.99-111
    • /
    • 2024
  • In this paper, a new seven-parameter Mittag-Leffler function of a single complex variable is proposed as a generalization of the standard Mittag-Leffler function, certain generalizations of Mittag-Leffler function, hypergeometric function and confluent hypergeometric function. Certain essential analytic properties are mainly discussed, such as radius of convergence, order, type, differentiation, Mellin-Barnes integral representation and Euler transform in the complex plane. Its relation to Fox-Wright function and H-function is also developed.

Effects of nonlocal parameter on bending of Intermediate filaments: Formulation of Euler beam theory

  • Taj, Muhammad;Hussain, Muzamal;Khadimallah, Mohamed A.;Baili, Jamel;Khedher, Khaled Mohamed;Tounsi, Abdelouahed
    • Advances in concrete construction
    • /
    • 제12권6호
    • /
    • pp.491-497
    • /
    • 2021
  • Cell components play vital role within the cell when the cell under goes deformation. These components are microtubules, microfilaments and intermediate filaments. Intermediate filaments are like thread and are of different types. Like microtubules and microfilaments these components also undergo the deformation and their dynamics affected when change occurs within cell. In the present study, bending of intermediate filaments are studied keeping the nonlocal effects under consideration. It is observed that the nonlocal parameter has a great impact on the dynamics of intermediate filaments. This study is made by the application of Euler beam theory.

선형 탄성지반 위에 놓인 압축부재의 자유진동 (Free Vibrations of Compressive Members Resting on Linear Elastic Foundation)

  • 이병구;이광범;모정만;신성철
    • 한국농공학회지
    • /
    • 제42권6호
    • /
    • pp.122-129
    • /
    • 2000
  • The purpose of this study is to investigate both the fundamental and some higher natural frequencies and mode shapes of compressive members resting on the linear elastic foundation. The model of compressive member is based on the classical Bernoulli-Euler beam theory. The differential equation governing free vibrations of such members subjected to an axial load is derived and solved numerically for calculating the natural frequencies and mode shapes. The Improved Euler method is used to integrate the differential equation and the Determinant Search method combined with the Regula-Falsi method to determine the natural frequencies, respectively. In numerical examples, the hinged-hinged, hinged-clamped, clamped-hinged and clamped-clamped end constraints are considered. The convergence analysis is conducted for determining the available step size in the Improved Euler method. The validation of theories developed herein is also conducted by comparing the numerical results between this study and SAP 90. The non-dimensional frequency parameters are presented as the non-dimensional system parameters: section ratio, modulus parameter and load parameter. Also typical mode shapes are presented.

  • PDF

Bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams using integral form of Eringen's non-local elasticity theory

  • Nejad, Mohammad Zamani;Hadi, Amin;Omidvari, Arash;Rastgoo, Abbas
    • Structural Engineering and Mechanics
    • /
    • 제67권4호
    • /
    • pp.417-425
    • /
    • 2018
  • The main aim of this paper is to investigate the bending of Euler-Bernouilli nano-beams made of bi-directional functionally graded materials (BDFGMs) using Eringen's non-local elasticity theory in the integral form with compare the differential form. To the best of the researchers' knowledge, in the literature, there is no study carried out into integral form of Eringen's non-local elasticity theory for bending analysis of BDFGM Euler-Bernoulli nano-beams with arbitrary functions. Material properties of nano-beam are assumed to change along the thickness and length directions according to arbitrary function. The approximate analytical solutions to the bending analysis of the BDFG nano-beam are derived by using the Rayleigh-Ritz method. The differential form of Eringen's non-local elasticity theory reveals with increasing size effect parameter, the flexibility of the nano-beam decreases, that this is unreasonable. This problem has been resolved in the integral form of the Eringen's model. For all boundary conditions, it is clearly seen that the integral form of Eringen's model predicts the softening effect of the non-local parameter as expected. Finally, the effects of changes of some important parameters such as material length scale, BDFG index on the values of deflection of nano-beam are studied.