• Title/Summary/Keyword: Euler Bernoulli beam theory

Search Result 276, Processing Time 0.024 seconds

Free vibration analysis of tapered beam-column with pinned ends embedded in Winkler-Pasternak elastic foundation

  • Civalek, Omer;Ozturk, Baki
    • Geomechanics and Engineering
    • /
    • v.2 no.1
    • /
    • pp.45-56
    • /
    • 2010
  • The current study presents a mathematical model and numerical method for free vibration of tapered piles embedded in two-parameter elastic foundations. The method of Discrete Singular Convolution (DSC) is used for numerical simulation. Bernoulli-Euler beam theory is considered. Various numerical applications demonstrate the validity and applicability of the proposed method for free vibration analysis. The results prove that the proposed method is quite easy to implement, accurate and highly efficient for free vibration analysis of tapered beam-columns embedded in Winkler- Pasternak elastic foundations.

Vibration behavior of bi-dimensional functionally graded beams

  • Selmi, Abdellatif
    • Structural Engineering and Mechanics
    • /
    • v.77 no.5
    • /
    • pp.587-599
    • /
    • 2021
  • Based on Euler-Bernoulli beam theory and continuous element method, the free vibration of bi-dimensional functionally graded beams is investigated. It is assumed that the material properties vary exponentially along the beam thickness and length. The characteristic frequency equations of beams with different boundary conditions are obtained by transfer matrix method. The validity of the proposed method is assessed through comparison with available results. Parametric studies are carried out to analyze the influences of the gradient indexes and the beam slenderness ratio on the natural frequencies of bi-dimensional functionally graded beams.

Bending analysis of a single leaf flexure using higher-order beam theory

  • Nguyen, Nghia Huu;Lee, Dong-Yeon
    • Structural Engineering and Mechanics
    • /
    • v.53 no.4
    • /
    • pp.781-790
    • /
    • 2015
  • We apply higher-order beam theory to analyze the deflections and stresses of a cantilevered single leaf flexure in bending. Our equations include shear deformation and the warping effect in bending. The results are compared with Euler-Bernoulli and Timoshenko beam theory, and are verified by finite element analysis (FEA). The results show that the higher-order beam theory is in a good agreement with the FEA results, with errors of less than 10%. These results indicate that the analysis of the deflections and stresses of a single leaf flexure should consider the shear and warping effects in bending to ensure high precision mechanism design.

Thermoelastic beam in modified couple stress thermoelasticity induced by laser pulse

  • Kumar, Rajneesh;Devi, Shaloo
    • Computers and Concrete
    • /
    • v.19 no.6
    • /
    • pp.701-710
    • /
    • 2017
  • In this study, the thermoelastic beam in modified couple stress theory due to laser source and heat flux is investigated. The beam are heated by a non-Guassian laser pulse and heat flux. The Euler Bernoulli beam theory and the Laplace transform technique are applied to solve the basic equations for coupled thermoelasticity. The simply-supported and isothermal boundary conditions are assumed for both ends of the beam. A general algorithm of the inverse Laplace transform is developed. The analytical results have been numerically analyzed with the help of MATLAB software. The numerically computed results for lateral deflection, thermal moment and axial stress due to laser source and heat flux have been presented graphically. Some comparisons have been shown in figures to estimate the effects of couple stress on the physical quantities. A particular case of interest is also derived. The study of laser-pulse find many applications in the field of biomedical, imaging processing, material processing and medicine with regard to diagnostics and therapy.

Buckling and bending analyses of a sandwich beam based on nonlocal stress-strain elasticity theory with porous core and functionally graded facesheets

  • Mehdi, Mohammadimehr
    • Advances in materials Research
    • /
    • v.11 no.4
    • /
    • pp.279-298
    • /
    • 2022
  • In this paper, the important novelty and the defining a physical phenomenon of the resent research is the development of nonlocal stress and strain parameters on the porous sandwich beam with functionally graded materials in the top and bottom face sheets.Also, various beam models including Euler-Bernoulli, Reddy and the generalized formulation of two-variable beam theories are obtained in this research. According to a nonlocal strain elasticity theory, the strain at a reference point in the body is dependent not only on the stress state at that point, but also on the stress state at all of the points throughout the body. Thus, the nonlocal stress-strain elasticity theory is defined that can be actual at micro/nano scales. It can be seen that the critical buckling load and transverse deflection of sandwich beam by considering both nonlocal stress-strain parameters is higher than the nonlocal stress parameter. On the other hands, it is noted that by considering the nonlocal stress-strain parameters simultaneously becomes the actual case.

Position Control for a Flexible Manipulator Using Sliding Modes (슬라이딩 모드를 이용한 유연한 매니퓰레이터의 위치제어)

  • 김정구;박창용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.321-321
    • /
    • 2000
  • This paper presents a sliding mode controller based on variable structure for the tip position control of a single-link flexible manipulator. Dynamic equations of a single-link flexible manipulator are derived from the Euler-Lagrange equation using a Lagrangian assumed modes method based on Bernoulli-Euler Beam theory. Simulation results are presented to show the validity of the system modeling, controller design.

  • PDF

A unified consistent couple stress beam theory for functionally graded microscale beams

  • Chih-Ping Wu;Zhen Huang
    • Steel and Composite Structures
    • /
    • v.51 no.2
    • /
    • pp.103-116
    • /
    • 2024
  • Based on the consistent couple stress theory (CCST), we develop a unified formulation for analyzing the static bending and free vibration behaviors of functionally graded (FG) microscale beams (MBs). The strong forms of the CCST-based Euler-Bernoulli, Timoshenko, and Reddy beam theories, as well as the CCST-based sinusoidal, exponential, and hyperbolic shear deformation beam theories, can be obtained by assigning some specific shape functions of the shear deformations varying through the thickness direction of the FGMBs in the unified formulation. The above theories are thus included as special cases of the unified CCST. A comparative study between the results obtained using a variety of CCST-based beam theories and those obtained using their modified couple stress theory-based counterparts is carried out. The impacts of some essential factors on the deformation, stress, and natural frequency parameters of the FGMBs are examined, including the material length-scale parameter, the aspect ratio, and the material-property gradient index.

Dynamic stiffness matrix method for axially moving micro-beam

  • Movahedian, Bashir
    • Interaction and multiscale mechanics
    • /
    • v.5 no.4
    • /
    • pp.385-397
    • /
    • 2012
  • In this paper the dynamic stiffness matrix method was used for the free vibration analysis of axially moving micro beam with constant velocity. The extended Hamilton's principle was employed to derive the governing differential equation of the problem using the modified couple stress theory. The dynamic stiffness matrix of the moving micro beam was evaluated using appropriate expressions of the shear force and bending moment according to the Euler-Bernoulli beam theory. The effects of the beam size and axial velocity on the dynamic characteristic of the moving beam were investigated. The natural frequencies and critical velocity of the axially moving micro beam were also computed for two different end conditions.

Free Vibrations of Tapered Cantilever-Type Beams with Tip Mass at the Free End (자유단에 집중질량을 갖는 캔틸레버형 변단면 보의 자유진동)

  • Oh, Sang-Jin;Lee, Jae-Young;Park, Kwang-Kyou;Mo, Jeong-Man
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.394.1-394
    • /
    • 2002
  • The purpose of this paper is to investigate the natural frequencies and mode shapes of tapered beams with general boundary condition(translational and rotational elastic support) at one end and carrying a tip mass of rotatory inertia at the other end. The beam model is based on the classical Bernoulli-Euler beam theory which neglects the effects of rotatory inertia and shear deformation. (omitted)

  • PDF

Deflections and rotations in rectangular beams with straight haunches under uniformly distributed load considering the shear deformations

  • Barquero-Cabrero, Jose Daniel;Luevanos-Rojas, Arnulfo;Lopez-Chavarria, Sandra;Medina-Elizondo, Manuel;Velazquez-Santillan, Francisco;Sandoval-Rivas, Ricardo
    • Smart Structures and Systems
    • /
    • v.22 no.6
    • /
    • pp.689-697
    • /
    • 2018
  • This paper presents a model of the elastic curve for rectangular beams with straight haunches under uniformly distributed load and moments in the ends considering the bending and shear deformations (Timoshenko Theory) to obtain the deflections and rotations on the beam, which is the main part of this research. The traditional model of the elastic curve for rectangular beams under uniformly distributed load considers only the bending deformations (Euler-Bernoulli Theory). Also, a comparison is made between the proposed and traditional model of simply supported beams with respect to the rotations in two supports and the maximum deflection of the beam. Also, another comparison is made for beams fixed at both ends with respect to the moments and reactions in the support A, and the maximum deflection of the beam. Results show that the proposed model is greater for simply supported beams in the maximum deflection and the traditional model is greater for beams fixed at both ends in the maximum deflection. Then, the proposed model is more appropriate and safe with respect the traditional model for structural analysis, because the shear forces and bending moments are present in any type of structure and the bending and shear deformations appear.