• Title/Summary/Keyword: Euler Bernoulli beam theory

Search Result 276, Processing Time 0.021 seconds

Determination of the Static Rigidity of the End Mill Using Neural Network (신경망을 이용한 엔드밀의 정적 강성 결정)

  • Lee, Sang-Kyu;Ko, Sung-Lim
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.12
    • /
    • pp.143-152
    • /
    • 1997
  • The deflection of an end mill is very important in machining process and cutting simulation because it affects directly workpiece accuracy, cutting force, and chattering. In this study, the deflection of the end mill was studied both experimentally and by using finite element analysis. And the moment of inertia of cross sections of the helical end mill is calculated for the determination of the relation between geometry of radial cross section and rigidity of the tools. Using the Bernoulli-Euler beam theory and the concept of equivalent diameter, a deflection model is established, which includes most influences from tool geomety parameters. It was found that helix angle attenuates the rigidity of the end mill by the finite element analysis. As a result, the equivalent diameter is determined by tooth number, inscribed diameter ratio, cross sectional geometry and helix angle. Because the relation betweem equivalent diameter and each factor is nonlinear, neural network is used to decide the equivalent diameter. Input patterns and desired outputs for the neural network are obtained by FEM analysis in several case of end milling operations.

  • PDF

Stability Analysis of Beck's Column with a Tip Mass Restrained by a Spring (스프링으로 지지된 자유단에 집중질량을 갖는 Beck 기둥의 안정성 해석)

  • Li, Guangfan;Oh, Sang-Jin;Kim, Gwon-Sik;Lee, Byoung-Koo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.11 s.104
    • /
    • pp.1287-1294
    • /
    • 2005
  • The purpose of this paper is to investigate free vibrations and critical loads of the Beck's columns with a tip spring, which carry a tip mass. The ordinary differential equation governing free vibrations of Beck's column subjected to a follower force is derived based on the Bernoulli-Euler beam theory Both the divergence and flutter critical loads are calculated from the load-frequency corves that are obtained by solving the differential equation numerically. The critical loads are presented in the figures as functions of various non-dimensional system parameters such as the subtangential parameter, mass ratio and spring parameter.

A comparative study for beams on elastic foundation models to analysis of mode-I delamination in DCB specimens

  • Shokrieh, Mahmood Mehrdad;Heidari-Rarani, Mohammad
    • Structural Engineering and Mechanics
    • /
    • v.37 no.2
    • /
    • pp.149-162
    • /
    • 2011
  • The aim of this research is a comprehensive review and evaluation of beam theories resting on elastic foundations that used to model mode-I delamination in multidirectional laminated composite by DCB specimen. A compliance based approach is used to calculate critical strain energy release rate (SERR). Two well-known beam theories, i.e. Euler-Bernoulli (EB) and Timoshenko beams (TB), on Winkler and Pasternak elastic foundations (WEF and PEF) are considered. In each case, a closed-form solution is presented for compliance versus crack length, effective material properties and geometrical dimensions. Effective flexural modulus ($E_{fx}$) and out-of-plane extensional stiffness ($E_z$) are used in all models instead of transversely isotropic assumption in composite laminates. Eventually, the analytical solutions are compared with experimental results available in the literature for unidirectional ($[0^{\circ}]_6$) and antisymmetric angle-ply ($[{\pm}30^{\circ}]_5$, and $[{\pm}45^{\circ}]_5$) lay-ups. TB on WEF is a simple model that predicts more accurate results for compliance and SERR in unidirectional laminates in comparison to other models. TB on PEF, in accordance with Williams (1989) assumptions, is too stiff for unidirectional DCB specimens, whereas in angle-ply DCB specimens it gives more reliable results. That it shows the effects of transverse shear deformation and root rotation on SERR value in composite DCB specimens.

Dynamic characteristics analysis of partial-interaction composite continuous beams

  • Fang, Genshen;Wang, Jingquan;Li, Shuai;Zhang, Shubin
    • Steel and Composite Structures
    • /
    • v.21 no.1
    • /
    • pp.195-216
    • /
    • 2016
  • The dynamic characteristics of continuous steel-concrete composite beams considering the effect of interlayer slip were investigated based on Euler Bernoulli's beam theory. A simplified calculation model was presented, in which the Mode Stiffness Matrix (MSM) was developed. The natural frequencies and modes of partial-interaction composite continuous beams can be calculated accurately and easily by the use of MSM. Proceeding from the present method, the natural frequencies of two-span steel-concrete composite continuous beams with different span-ratios (0.53, 0.73, 0.85, 1) and different shear connection stiffnesses on the interface are calculated. The influence pattern of interfacial stiffness on bending vibration frequency was found. With the decrease of shear connection stiffness on the interface, the flexural vibration frequencies decrease obviously. And the influence on low order modes is more obvious while the reduction degree of high order is more sizeable. The real natural frequencies of partial-interaction continuous beams commonly used could have a 20% to 40% reduction compared with the fully-interaction ones. Furthermore, the reduction-ratios of natural frequencies for different span-ratios two-span composite beams with uniform shear connection stiffnesses are totally the same. The span-ratio mainly impacts on the mode shape. Four kinds of shear connection stiffnesses of steel-concrete composite continuous beams are calculated and compared with the experimental data and the FEM results. The calculated results using the proposed method agree well with the experimental and FEM ones on the low order modes which mainly determine the vibration properties.

Behavior of Flexible Hose Connected to Mother Ship (모함에 연결된 탄성 호스의 거동)

  • Kim, Kun-Woo;Lee, Jae-Wook;Kim, Hyung-Ryul;Yoo, Wan-Suk;An, Deuk-Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.3
    • /
    • pp.235-240
    • /
    • 2011
  • A flexible hose attached to a mother ship experiences various motions that depend on the movement of the mother ship and that of underwater vehicle. Although the motion of the hose is a very important factor that determines how a mother ship should be steered in a real situation, it is difficult to experimentally obtain information about the hose motion. Therefore, we study the motion of the hose analytically. The ANCF(absolute nodal coordinate formulation) was used to model the hose, because this formulation can relax the Euler-Bernoulli theory and the Timoshenko beam theory and allow the deformation of the cross section. The mother ship is assumed to be a rigid body with 6 degrees of freedom. The motion of the hose is predominantly affected by the behavior of the mother ship and by the fluid flow.

On the Improvement of the Accuracy of Higher Order Derivatives in the MLS(Moving Least Square) Difference Method via Mixed Formulation (MLS 차분법의 결정 변수에 따른 정확도 분석 및 혼합변분이론을 통한 미분근사 성능향상)

  • Kim, Hyun-Young;Kim, Jun-Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.5
    • /
    • pp.279-286
    • /
    • 2020
  • In this study, we investigate the accuracy of higher order derivatives in the moving least square (MLS) difference method. An interpolation function is constructed by employing a Taylor series expansion via MLS approximation. The function is then applied to the mixed variational theorem in which the displacement and stress resultants are treated as independent variables. The higher order derivatives are evaluated by solving simply supported beams and cantilevers. The results are compared with the analytical solutions in terms of the order of polynomials, support size of the weighting function, and number of nodes. The accuracy of the higher order derivatives improves with the employment of the mean value theorem, especially for very high-order derivatives (e.g., above fourth-order derivatives), which are important in a classical asymptotic analysis.