• Title/Summary/Keyword: Euler Bernoulli beam theory

Search Result 276, Processing Time 0.024 seconds

Bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams using integral form of Eringen's non-local elasticity theory

  • Nejad, Mohammad Zamani;Hadi, Amin;Omidvari, Arash;Rastgoo, Abbas
    • Structural Engineering and Mechanics
    • /
    • v.67 no.4
    • /
    • pp.417-425
    • /
    • 2018
  • The main aim of this paper is to investigate the bending of Euler-Bernouilli nano-beams made of bi-directional functionally graded materials (BDFGMs) using Eringen's non-local elasticity theory in the integral form with compare the differential form. To the best of the researchers' knowledge, in the literature, there is no study carried out into integral form of Eringen's non-local elasticity theory for bending analysis of BDFGM Euler-Bernoulli nano-beams with arbitrary functions. Material properties of nano-beam are assumed to change along the thickness and length directions according to arbitrary function. The approximate analytical solutions to the bending analysis of the BDFG nano-beam are derived by using the Rayleigh-Ritz method. The differential form of Eringen's non-local elasticity theory reveals with increasing size effect parameter, the flexibility of the nano-beam decreases, that this is unreasonable. This problem has been resolved in the integral form of the Eringen's model. For all boundary conditions, it is clearly seen that the integral form of Eringen's model predicts the softening effect of the non-local parameter as expected. Finally, the effects of changes of some important parameters such as material length scale, BDFG index on the values of deflection of nano-beam are studied.

Static deflection of nonlocal Euler Bernoulli and Timoshenko beams by Castigliano's theorem

  • Devnath, Indronil;Islam, Mohammad Nazmul;Siddique, Minhaj Uddin Mahmood;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.12 no.2
    • /
    • pp.139-150
    • /
    • 2022
  • This paper presents sets of explicit analytical equations that compute the static displacements of nanobeams by adopting the nonlocal elasticity theory of Eringen within the framework of Euler Bernoulli and Timoshenko beam theories. Castigliano's theorem is applied to an equivalent Virtual Local Beam (VLB) made up of linear elastic material to compute the displacements. The first derivative of the complementary energy of the VLB with respect to a virtual point load provides displacements. The displacements of the VLB are assumed equal to those of the nonlocal beam if nonlocal effects are superposed as additional stress resultants on the VLB. The illustrative equations of displacements are relevant to a few types of loadings combined with a few common boundary conditions. Several equations of displacements, thus derived, matched precisely in similar cases with the equations obtained by other analytical methods found in the literature. Furthermore, magnitudes of maximum displacements are also in excellent agreement with those computed by other numerical methods. These validated the superposition of nonlocal effects on the VLB and the accuracy of the derived equations.

Passive shape control of force-induced harmonic lateral vibrations for laminated piezoelastic Bernoulli-Euler beams-theory and practical relevance

  • Schoeftner, J.;Irschik, H.
    • Smart Structures and Systems
    • /
    • v.7 no.5
    • /
    • pp.417-432
    • /
    • 2011
  • The present paper is devoted to vibration canceling and shape control of piezoelastic slender beams. Taking into account the presence of electric networks, an extended electromechanically coupled Bernoulli-Euler beam theory for passive piezoelectric composite structures is shortly introduced in the first part of our contribution. The second part of the paper deals with the concept of passive shape control of beams using shaped piezoelectric layers and tuned inductive networks. It is shown that an impedance matching and a shaping condition must be fulfilled in order to perfectly cancel vibrations due to an arbitrary harmonic load for a specific frequency. As a main result of the present paper, the correctness of the theory of passive shape control is demonstrated for a harmonically excited piezoelelastic cantilever by a finite element calculation based on one-dimensional Bernoulli-Euler beam elements, as well as by the commercial finite element code of ANSYS using three-dimensional solid elements. Finally, an outlook for the practical importance of the passive shape control concept is given: It is shown that harmonic vibrations of a beam with properly shaped layers according to the presented passive shape control theory, which are attached to an resistor-inductive circuit (RL-circuit), can be significantly reduced over a large frequency range compared to a beam with uniformly distributed piezoelectric layers.

Differential transform method for free vibration analysis of a moving beam

  • Yesilce, Yusuf
    • Structural Engineering and Mechanics
    • /
    • v.35 no.5
    • /
    • pp.645-658
    • /
    • 2010
  • In this study, the Differential Transform Method (DTM) is employed in order to solve the governing differential equation of a moving Bernoulli-Euler beam with axial force effect and investigate its free flexural vibration characteristics. The free vibration analysis of a moving Bernoulli-Euler beam using DTM has not been investigated by any of the studies in open literature so far. At first, the terms are found directly from the analytical solution of the differential equation that describes the deformations of the cross-section according to Bernoulli-Euler beam theory. After the analytical solution, an efficient and easy mathematical technique called DTM is used to solve the differential equation of the motion. The calculated natural frequencies of the moving beams with various combinations of boundary conditions using DTM are tabulated in several tables and are compared with the results of the analytical solution where a very good agreement is observed.

Free Vibrations of Horizontally Curved Beams Resting on Winkler-Type Foundations (Winkler형 지반위에 놓인 수평 곡선보의 자유진동)

  • 오상진;이병구;이인원
    • Journal of KSNVE
    • /
    • v.8 no.3
    • /
    • pp.524-532
    • /
    • 1998
  • The purpose of this paper is to investigate the free vibrations of horizontally curved beams resting on Winkler-type foundations. Based on the classical Bernoulli-Euler beam theory, the governing differential equations for circular curved beams are derived and solved numerically. Hinged-hinged, hinged-clamped and clamped-clamped end constraints are considered in numerical examples. The free vibration frequencies calculated using the present analysis have been compared with the finite element's results computed by the software ADINA. Numerical results are presented to show the effects on the natural frequencies of curved beams of the horizontal rise to span length ratio, the foundation parameter, and the width ratio of contact area between the beam and foundation.

  • PDF

Elastica of Simple Variable-Arc-Length Beams (단순지지 변화곡선 길이 보의 정확탄성곡선)

  • 이병구;박성근
    • Computational Structural Engineering
    • /
    • v.10 no.4
    • /
    • pp.177-184
    • /
    • 1997
  • In this paper, numerical methods are developed for solving the elastica of simple beams with variable-arc-length subjected to a point loading. The beam model is based on Bernoulli-Euler beam theory. The Runge-Kutta and Regula-Falsi methods, respectively, are used to solve the governing differential equations and to compute the beam's rotation at the left end of the beams. Extensive numerical results of the elastica responses, including deflected shapes, rotations of cross-section and bending moments, are presented in non-dimensional forms. The possible maximum values of the end rotation, deflection and bending moment are determined by analyzing the numerical data obtained in this study.

  • PDF

Geometrical Nonlinear Analyses of Post-buckled Columns with Variable Cross-section (후좌굴 변단면 기둥의 기하 비선형 해석)

  • Lee, Byoung Koo;Kim, Suk Ki;Lee, Tae Eun;Kim, Gwon Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1A
    • /
    • pp.53-60
    • /
    • 2009
  • This paper deals with the geometrical nonlinear analyses of post-buckled columns with variable cross-section. The objective columns having variable cross-section of the width, depth and square tapers are supported by both hinged ends. By using the Bernoulli-Euler beam theory, differential equations governing the elastica of post-buckled column and their boundary conditions are derived. The solution methods of these differential equations which have two unknown parameters are developed. As the numerical results, equilibrium paths, elasticas and stress resultants of the post-buckled columns are presented. Laboratory scaled experiments were conducted for validating the theories developed in this study.

Free Vibrations of Elastica Shaped Arches with Linear Taper (선형 변단면 정확탄성곡선형 아치의 자유진동)

  • Lee, Byoung Koo;Lee, Tae Eun;Kim, Gwon Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6A
    • /
    • pp.617-624
    • /
    • 2009
  • This study deals with the free vibrations of the elastica shaped arch with linear taper. The shape of elastica is obtained from the Bernoulli-Euler beam theory. Differential equations governing free vibrations of such arch are derived and numerically solved to determine natural frequencies, in which three kinds of taper type and two kinds of end constraint, respectively, are considered. For validating the theories presented herein, the frequency parameters obtained in this study are compared to those of SAP 2000. As results of the numerical analyses, effects of end constraint, taper type, slenderness ratio and section ratio on the lowest four non-dimensional frequency parameters are extensively investigated.

Gemetrical Non-Linear Behavior of Simply Supported Tapered Beams (단순지지 변단면 보의 기하학적 비선형 거동)

  • 이병구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.1
    • /
    • pp.106-114
    • /
    • 1999
  • This paper explores the geometrical non-linear behavior of the simply supported tapered beams subject to the trapezoidal distributed load and end moments. In order to apply the Bernoulli -Euler beam theory to this tapered beam, the bending moment equation on any point of the elastical is obtained by the redistribution of trapezoidal distributed load. On the basis of the bending moment equation and the BErnoulli-Euler beam theory, the differential equations governging the elastical of such beams are derived and solved numerically by using the Runge-Jutta method and the trial and error method. The three kinds of tapered beams (i.e. width, depth and square tapers) are analyzed in this study. The numerical results of non-linear behavior obtained in this study from the simply supported tapered beams are appeared to be quite well according to the results from the reference . As the numerical results, the elastica, the stress resultants and the load-displacement curves are given in the figures.

  • PDF

Free vibration of functionally graded thin beams made of saturated porous materials

  • Galeban, M.R.;Mojahedin, A.;Taghavi, Y.;Jabbari, M.
    • Steel and Composite Structures
    • /
    • v.21 no.5
    • /
    • pp.999-1016
    • /
    • 2016
  • This study presents free vibration of beam made of porous material. The mechanical properties of the beam is variable in the thickness direction and the beam is investigated in three situations: poro/nonlinear nonsymmetric distribution, poro/nonlinear symmetric distribution, and poro/monotonous distribution. First, the governing equations of porous beam are derived using principle of virtual work based on Euler-Bernoulli theory. Then, the effect of pores compressibility on natural frequencies of the beam is studied by considering clamped-clamped, clamped-free and hinged-hinged boundary conditions. Moreover, the results are compared with homogeneous beam with the same boundary conditions. Finally, the effects of poroelastic parameters such as pores compressibility, coefficients of porosity and mass on natural frequencies has been considered separately and simultaneously.