• Title/Summary/Keyword: Euler Bernoulli

Search Result 523, Processing Time 0.026 seconds

Static deflection of nonlocal Euler Bernoulli and Timoshenko beams by Castigliano's theorem

  • Devnath, Indronil;Islam, Mohammad Nazmul;Siddique, Minhaj Uddin Mahmood;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.12 no.2
    • /
    • pp.139-150
    • /
    • 2022
  • This paper presents sets of explicit analytical equations that compute the static displacements of nanobeams by adopting the nonlocal elasticity theory of Eringen within the framework of Euler Bernoulli and Timoshenko beam theories. Castigliano's theorem is applied to an equivalent Virtual Local Beam (VLB) made up of linear elastic material to compute the displacements. The first derivative of the complementary energy of the VLB with respect to a virtual point load provides displacements. The displacements of the VLB are assumed equal to those of the nonlocal beam if nonlocal effects are superposed as additional stress resultants on the VLB. The illustrative equations of displacements are relevant to a few types of loadings combined with a few common boundary conditions. Several equations of displacements, thus derived, matched precisely in similar cases with the equations obtained by other analytical methods found in the literature. Furthermore, magnitudes of maximum displacements are also in excellent agreement with those computed by other numerical methods. These validated the superposition of nonlocal effects on the VLB and the accuracy of the derived equations.

Static bending study of AFG nanobeam using local stress-and strain-driven nonlocal integral models

  • Yuan Tang;Hai Qing
    • Advances in nano research
    • /
    • v.16 no.3
    • /
    • pp.265-272
    • /
    • 2024
  • In this paper, the problem of static bending of axially functionally graded (AFG) nanobeam is formulated with the local stress(Lσ)- and strain-driven(εD) two-phase local/nonlocal integral models (TPNIMs). The novelty of the present study aims to compare the size-effects of nonlocal integral models on bending deflections of AFG Euler-Bernoulli nano-beams. The integral relation between strain and nonlocal stress components based on two types nonlocal integral models is transformed unitedly and equivalently into differential form with constitutive boundary conditions. Purely LσD- and εD-NIMs would lead to ill-posed mathematical formulation, and Purely εD- and LσD-nonlocal differential models (NDM) may result in inconsistent size-dependent bending responses. The general differential quadrature method is applied to obtain the numerical results for bending deflection and moment of AFG nanobeam subjected to different boundary and loading conditions. The influence of AFG index, nonlocal models, and nonlocal parameters on the bending deflections of AFG Euler-Bernoulli nanobeams is investigated numerically. A consistent softening effects can be obtained for both LσD- and εD-TPNIMs. The results from current work may provide useful guidelines for designing and optimizing AFG Euler-Bernoulli beam based nano instruments.

Free Vibrations of Horizontally Curved Beams Resting on Winkler-Type Foundations (Winkler형 지반위에 놓인 수평 곡선보의 자유진동)

  • 오상진;이병구;이인원
    • Journal of KSNVE
    • /
    • v.8 no.3
    • /
    • pp.524-532
    • /
    • 1998
  • The purpose of this paper is to investigate the free vibrations of horizontally curved beams resting on Winkler-type foundations. Based on the classical Bernoulli-Euler beam theory, the governing differential equations for circular curved beams are derived and solved numerically. Hinged-hinged, hinged-clamped and clamped-clamped end constraints are considered in numerical examples. The free vibration frequencies calculated using the present analysis have been compared with the finite element's results computed by the software ADINA. Numerical results are presented to show the effects on the natural frequencies of curved beams of the horizontal rise to span length ratio, the foundation parameter, and the width ratio of contact area between the beam and foundation.

  • PDF

Gemetrical Non-Linear Behavior of Simply Supported Tapered Beams (단순지지 변단면 보의 기하학적 비선형 거동)

  • 이병구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.1
    • /
    • pp.106-114
    • /
    • 1999
  • This paper explores the geometrical non-linear behavior of the simply supported tapered beams subject to the trapezoidal distributed load and end moments. In order to apply the Bernoulli -Euler beam theory to this tapered beam, the bending moment equation on any point of the elastical is obtained by the redistribution of trapezoidal distributed load. On the basis of the bending moment equation and the BErnoulli-Euler beam theory, the differential equations governging the elastical of such beams are derived and solved numerically by using the Runge-Jutta method and the trial and error method. The three kinds of tapered beams (i.e. width, depth and square tapers) are analyzed in this study. The numerical results of non-linear behavior obtained in this study from the simply supported tapered beams are appeared to be quite well according to the results from the reference . As the numerical results, the elastica, the stress resultants and the load-displacement curves are given in the figures.

  • PDF

Linearized instability analysis of frame structures under nonconservative loads: Static and dynamic approach

  • Hajdo, Emina;Mejia-Nava, Rosa Adela;Imamovic, Ismar;Ibrahimbegovic, Adnan
    • Coupled systems mechanics
    • /
    • v.10 no.1
    • /
    • pp.79-102
    • /
    • 2021
  • In this paper we deal with instability problems of structures under nonconservative loading. It is shown that such class of problems should be analyzed in dynamics framework. Next to analytic solutions, provided for several simple problems, we show how to obtain the numerical solutions to more complex problems in efficient manner by using the finite element method. In particular, the numerical solution is obtained by using a modified Euler-Bernoulli beam finite element that includes the von Karman (virtual) strain in order to capture linearized instabilities (or Euler buckling). We next generalize the numerical solution to instability problems that include shear deformation by using the Timoshenko beam finite element. The proposed numerical beam models are validated against the corresponding analytic solutions.

A NOTE ON THE q-ANALOGUES OF EULER NUMBERS AND POLYNOMIALS

  • Choi, Jong-Sung;Kim, Tae-Kyun;Kim, Young-Hee
    • Honam Mathematical Journal
    • /
    • v.33 no.4
    • /
    • pp.529-534
    • /
    • 2011
  • In this paper, we consider the q-analogues of Euler numbers and polynomials using the fermionic p-adic invariant integral on $\mathbb{Z}_p$. From these numbers and polynomials, we derive some interesting identities and properties on the q-analogues of Euler numbers and polynomials.

SOME RELATIONSHIPS BETWEEN (p, q)-EULER POLYNOMIAL OF THE SECOND KIND AND (p, q)-OTHERS POLYNOMIALS

  • KANG, JUNG YOOG;AGARWAL, R.P.
    • Journal of applied mathematics & informatics
    • /
    • v.37 no.3_4
    • /
    • pp.219-234
    • /
    • 2019
  • We use the definition of Euler polynomials of the second kind with (p, q)-numbers to identify some identities and properties of these polynomials. We also investigate some relationships between (p, q)-Euler polynomials of the second kind, (p, q)-Bernoulli polynomials, and (p, q)-tangent polynomials by using the properties of (p, q)-exponential function.

EVALUATIONS OF $\zeta(2n)$

  • Choi, June-Sang
    • East Asian mathematical journal
    • /
    • v.16 no.2
    • /
    • pp.233-237
    • /
    • 2000
  • Since the time of Euler, there have been many proofs giving the value of $\zeta(2n)$. We also give an evaluation of $\zeta(2n)$ by analyzing the generating function of Bernoulli numbers.

  • PDF

ON THE ANALOGS OF BERNOULLI AND EULER NUMBERS, RELATED IDENTITIES AND ZETA AND L-FUNCTIONS

  • Kim, Tae-Kyun;Rim, Seog-Hoon;Simsek, Yilmaz;Kim, Dae-Yeoul
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.2
    • /
    • pp.435-453
    • /
    • 2008
  • In this paper, by using q-deformed bosonic p-adic integral, we give $\lambda$-Bernoulli numbers and polynomials, we prove Witt's type formula of $\lambda$-Bernoulli polynomials and Gauss multiplicative formula for $\lambda$-Bernoulli polynomials. By using derivative operator to the generating functions of $\lambda$-Bernoulli polynomials and generalized $\lambda$-Bernoulli numbers, we give Hurwitz type $\lambda$-zeta functions and Dirichlet's type $\lambda$-L-functions; which are interpolated $\lambda$-Bernoulli polynomials and generalized $\lambda$-Bernoulli numbers, respectively. We give generating function of $\lambda$-Bernoulli numbers with order r. By using Mellin transforms to their function, we prove relations between multiply zeta function and $\lambda$-Bernoulli polynomials and ordinary Bernoulli numbers of order r and $\lambda$-Bernoulli numbers, respectively. We also study on $\lambda$-Bernoulli numbers and polynomials in the space of locally constant. Moreover, we define $\lambda$-partial zeta function and interpolation function.

A FURTHER GENERALIZATION OF APOSTOL-BERNOULLI POLYNOMIALS AND RELATED POLYNOMIALS

  • Tremblay, R.;Gaboury, S.;Fugere, J.
    • Honam Mathematical Journal
    • /
    • v.34 no.3
    • /
    • pp.311-326
    • /
    • 2012
  • The purpose of this paper is to introduce and investigate two new classes of generalized Bernoulli and Apostol-Bernoulli polynomials based on the definition given recently by the authors [29]. In particular, we obtain a new addition formula for the new class of the generalized Bernoulli polynomials. We also give an extension and some analogues of the Srivastava-Pint$\acute{e}$r addition theorem [28] for both classes. Finally, by making use of the new adition formula, we exhibit several interesting relationships between generalized Bernoulli polynomials and other polynomials or special functions.