• Title/Summary/Keyword: Euler Bernoulli

Search Result 523, Processing Time 0.026 seconds

Bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams using integral form of Eringen's non-local elasticity theory

  • Nejad, Mohammad Zamani;Hadi, Amin;Omidvari, Arash;Rastgoo, Abbas
    • Structural Engineering and Mechanics
    • /
    • v.67 no.4
    • /
    • pp.417-425
    • /
    • 2018
  • The main aim of this paper is to investigate the bending of Euler-Bernouilli nano-beams made of bi-directional functionally graded materials (BDFGMs) using Eringen's non-local elasticity theory in the integral form with compare the differential form. To the best of the researchers' knowledge, in the literature, there is no study carried out into integral form of Eringen's non-local elasticity theory for bending analysis of BDFGM Euler-Bernoulli nano-beams with arbitrary functions. Material properties of nano-beam are assumed to change along the thickness and length directions according to arbitrary function. The approximate analytical solutions to the bending analysis of the BDFG nano-beam are derived by using the Rayleigh-Ritz method. The differential form of Eringen's non-local elasticity theory reveals with increasing size effect parameter, the flexibility of the nano-beam decreases, that this is unreasonable. This problem has been resolved in the integral form of the Eringen's model. For all boundary conditions, it is clearly seen that the integral form of Eringen's model predicts the softening effect of the non-local parameter as expected. Finally, the effects of changes of some important parameters such as material length scale, BDFG index on the values of deflection of nano-beam are studied.

Dynamic Modeling and Analysis of the Composite Beams with a PZT Layer (PZT층을 갖는 복합재 보의 동역학 모델링 및 해석)

  • Kim, Dae-Hwan;Lee, U-Sik
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.314-316
    • /
    • 2011
  • This paper develops a spectral element model for the composite beams with a surface-bonded piezoelectric layer from the governing equations of motion. The governing equations of motion are derived from Hamilton's principle by applying the Bernoulli-Euler beam theory for the bending vibration and the elementary rod theory for the longitudinal vibration of the composite beams. For the PZT layer, the Bernoulli-Euler beam theory and linear piezoelectricity theory are applied. The high accuracy of the present spectral element model is evaluated through the numerical examples by comparing with the finite element analysis results.

  • PDF

SYMMETRY PROPERTIES FOR A UNIFIED CLASS OF POLYNOMIALS ATTACHED TO χ

  • Gaboury, S.;Tremblay, R.;Fugere, J.
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.1_2
    • /
    • pp.119-130
    • /
    • 2013
  • In this paper, we obtain some generalized symmetry identities involving a unified class of polynomials related to the generalized Bernoulli, Euler and Genocchi polynomials of higher-order attached to a Dirichlet character. In particular, we prove a relation between a generalized X version of the power sum polynomials and this unified class of polynomials.

q-ADDITION THEOREMS FOR THE q-APPELL POLYNOMIALS AND THE ASSOCIATED CLASSES OF q-POLYNOMIALS EXPANSIONS

  • Sadjang, Patrick Njionou
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.5
    • /
    • pp.1179-1192
    • /
    • 2018
  • Several addition formulas for a general class of q-Appell sequences are proved. The q-addition formulas, which are derived, involved not only the generalized q-Bernoulli, the generalized q-Euler and the generalized q-Genocchi polynomials, but also the q-Stirling numbers of the second kind and several general families of hypergeometric polynomials. Some q-umbral calculus generalizations of the addition formulas are also investigated.

On the Free Vibration of Immersed Linearly Tapered Beam with a Tip Mass (첨단 질량을 갖는 선형 원뿔대의 자유진동)

  • Shin, Young-Jae;Sung, Kyung-Yun;Yun, Jong-Hak
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.402.1-402
    • /
    • 2002
  • A linearly tapered beam immersed partially in other material is considered and is modelled as a linearly tapered Bernoulli-Euler beam fixed at the bottom with a concentrated mass at the top. Its governing equations is derived and its free vibration analysis is performed for various boundary conditions. And the rotatory inertia of the eccentric lumped tip mass is considered. (omitted)

  • PDF

Analysis of a cantilever bouncing against a stop according to Timoshenko beam theory

  • Tsai, Hsiang-Chuan;Wu, Ming-Kuen
    • Structural Engineering and Mechanics
    • /
    • v.5 no.3
    • /
    • pp.297-306
    • /
    • 1997
  • The bouncing of a cantilever with the free end pressed against a stop can create high-frequency vibration that the Bernoulli-Euler beam theory is inadequate to solve. An analytic procedure is presented using Timoshenko beam theory to obtain the non-linear response of a cantilever supported by an elastic stop with clearance at the free end. Through a numerical example, the bouncing behavior of the Timoshenko and Bernoulli-Euler beam models are compared and discussed.

CALCULATING ZEROS OF THE GENERALIZED GENOCCHI POLYNOMIALS

  • Agarwal, R.P.;Ryoo, C.S.
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.3_4
    • /
    • pp.453-462
    • /
    • 2009
  • Kim [4] defined the generalized Genocchi numbers $G_{n,x}$. In this paper, we introduce the generalized Genocchi polynomials $G_{n,x}(x)$. One purpose of this paper is to investigate the zeros of the generalized Genocchi polynomials $G_{n,x}(x)$. We also display the shape of generalized Genocchi polynomials $G_{n,x}(x)$.

  • PDF