• Title/Summary/Keyword: Euler Bernoulli

Search Result 523, Processing Time 0.02 seconds

Influence of porosity and axial preload on vibration behavior of rotating FG nanobeam

  • Ehyaei, Javad;Akbarshahi, Amir;Shafiei, Navvab
    • Advances in nano research
    • /
    • v.5 no.2
    • /
    • pp.141-169
    • /
    • 2017
  • In this paper, a nanobeam connected to a rotating molecular hub is considered. The vibration behavior of rotating functionally graded nanobeam based on Eringen's nonlocal theory and Euler-Bernoulli beam model is investigated. Furthermore, axial preload and porosity effect is studied. It is supposed that the material attributes of the functionally graded porous nanobeam, varies continuously in the thickness direction according to the power law model considering the even distribution of porosities. Porosity at the nanoscopic length scale can affect on the rotating functionally graded nanobeams dynamics. The equations of motion and the associated boundary conditions are derived through the Hamilton's principle and generalized differential quadrature method (GDQM) is utilized to solve the equations. In this paper, the influences of some parameters such as functionally graded power (FG-index), porosity parameter, axial preload, nonlocal parameter and angular velocity on natural frequencies of rotating nanobeams with pure ceramic, pure metal and functionally graded materials are examined and some comparisons about the influence of various parameters on the natural frequencies corresponding to the simply-simply, simplyclamped, clamped-clamped boundary conditions are carried out.

Vertical vibrations of a bridge based on the traffic-pavement-bridge coupled system

  • Yin, Xinfeng;Liu, Yang;Kong, Bo
    • Earthquakes and Structures
    • /
    • v.12 no.4
    • /
    • pp.457-468
    • /
    • 2017
  • When studying the vibration of a suspension bridge based on the traffic-bridge coupled system, most researchers ignored the contribution of the pavement response. For example, the pavement was simplified as a rigid base and the deformation of pavement was ignored. However, the action of deck pavement on the vibration of vehicles or bridges should not be neglected. This study is mainly focused on establishing a new methodology fully considering the effects of bridge deck pavement, probabilistic traffic flows, and varied road roughness conditions. The bridge deck pavement was modeled as a boundless Euler-Bernoulli beam supported on the Kelvin model; the typical traffic flows were simulated by the improved Cellular Automaton (CA) traffic flow model; and the traffic-pavement-bridge coupled equations were established by combining the equations of motion of the vehicles, pavement, and bridge using the displacement and interaction force relationship at the contact locations. The numerical studies show that the proposed method can more rationally simulate the effect of the pavement on the vibrations of bridge and vehicles.

Mathematical modelling of the stability of carbon nanotube-reinforced panels

  • Sobhani Aragh, B.
    • Steel and Composite Structures
    • /
    • v.24 no.6
    • /
    • pp.727-740
    • /
    • 2017
  • The present paper studies the stability analysis of the continuously graded CNT-Reinforced Composite (CNTRC) panel stiffened by rings and stringers. The Stiffened Panel (SP) subjected to axial and lateral loads is reinforced by agglomerated CNTs smoothly graded through the thickness. A two-parameter Eshelby-Mori-Tanaka (EMT) model is adopted to derive the effective material moduli of the CNTRC. The stability equations of the CNRTC SP are obtained by means of the adjacent equilibrium criterion. Notwithstanding most available literature in which the stiffener effects were smeared out over the respective stiffener spacing, in the present work, the stiffeners are modeled as Euler-Bernoulli beams. The Generalized Differential Quadrature Method (GDQM) is employed to discretize the stability equations. A numerical study is performed to investigate the influences of different types of parameters involved on the critical buckling of the SP reinforced by agglomerated CNTs. The results achieved reveal that continuously distributing of CNTs adjacent to the inner and outer panel's surface results in improving the stiffness of the SP and, as a consequence, inclining the critical buckling load. Furthermore, it has been concluded that the decline rate of buckling load intensity factor owing to the increase of the panel angle is significantly more sensible for the smaller values of panel angle.

A novel porosity-based homogenization scheme for propagation of waves in axially-excited FG nanobeams

  • Ebrahimi, Farzad;Dabbagh, Ali
    • Advances in nano research
    • /
    • v.7 no.6
    • /
    • pp.379-390
    • /
    • 2019
  • Putting emphasis on the effect of existence of porosity in the functionally graded materials (FGMs) on the dynamic responses of waves scattered in FG nanobeams resulted in implementation of a novel porosity-based homogenization method for FGMs and show its applicability in a wave propagation problem in the presence of axial pre-load for the first time. In the employed porosity-dependent method, the coupling between density and Young's moduli is included to consider for the effective moduli of the FG nanobeam by the means of a more reliable homogenization technique. The beam-type element will be modeled via the classical theory of beams, namely Euler-Bernoulli beam theory. Also, the dynamic form of the principle of virtual work will be extended for such nanobeams to derive the motion equations. Applying the nonlocal constitutive equations of Eringen on the obtained motion equations will be resulted in derivation of the nanobeam's governing equations. Depicted results reveal that the dispersion responses of FG nanobeams will be decreased as the porosity volume fraction is increased which must be noticed by the designers of advanced nanosize devices who are interested in employment of wave dispersion approach in continuous systems for specific goals.

A comprehensive FE model for slender HSC columns under biaxial eccentric loads

  • Lou, Tiejiong;Lopes, Sergio M.R.;Lopes, Adelino V.;Sun, Wei
    • Structural Engineering and Mechanics
    • /
    • v.73 no.1
    • /
    • pp.17-25
    • /
    • 2020
  • A finite element (FE) model for analyzing slender reinforced high-strength concrete (HSC) columns under biaxial eccentric loading is formulated in terms of the Euler-Bernoulli theory. The cross section of columns is divided into discrete concrete and reinforcing steel fibers so as to account for varied material properties over the section. The interaction between axial and bending fields is introduced in the FE formulation so as to take the large-displacement or P-delta effects into consideration. The proposed model aims to be simple, user-friendly, and capable of simulating the full-range inelastic behavior of reinforced HSC slender columns. The nonlinear model is calibrated against the experimental data for slender column specimens available in the technical literature. By using the proposed model, a numerical study is carried out on pin-ended slender HSC square columns under axial compression and biaxial bending, with investigation variables including the load eccentricity and eccentricity angle. The calibrated model is expected to provide a valuable tool for more efficiently designing HSC columns.

A semi-analytical study on the nonlinear pull-in instability of FGM nanoactuators

  • Attia, Mohamed A.;Abo-Bakr, Rasha M.
    • Structural Engineering and Mechanics
    • /
    • v.76 no.4
    • /
    • pp.451-463
    • /
    • 2020
  • In this paper, a new semi-analytical solution for estimating the pull-in parameters of electrically actuated functionally graded (FG) nanobeams is proposed. All the bulk and surface material properties of the FG nanoactuator vary continuously in thickness direction according to power law distribution. Here, the modified couple stress theory (MCST) and Gurtin-Murdoch surface elasticity theory (SET) are jointly employed to capture the size effects of the nanoscale beam in the context of Euler-Bernoulli beam theory. According to the MCST and SET and accounting for the mid-plane stretching, axial residual stress, electrostatic actuation, fringing field, and dispersion (Casimir or/and van der Waals) forces, the nonlinear nonclassical equation of motion and boundary conditions are obtained derived using Hamilton principle. The proposed semi-analytical solution is derived by employing Galerkin method in conjunction with the Particle Swarm Optimization (PSO) method. The proposed solution approach is validated with the available literature. The freestanding behavior of nanoactuators is also investigated. A parametric study is conducted to illustrate the effects of different material and geometrical parameters on the pull-in response of cantilever and doubly-clamped FG nanoactuators. This model and proposed solution are helpful especially in mechanical design of micro/nanoactuators made of FGMs.

Plasticity-damage model parameters identification for structural connections

  • Imamovic, Ismar;Ibrahimbegovic, Adnan;Knopf-Lenoir, Catherine;Mesic, Esad
    • Coupled systems mechanics
    • /
    • v.4 no.4
    • /
    • pp.337-364
    • /
    • 2015
  • In this paper we present methodology for parameters identification of constitutive model which is able to present behavior of a connection between two members in a structure. Such a constitutive model for frame connections can be cast in the most general form of the Timoshenko beam, which can present three failure modes. The first failure mode pertains to the bending in connection, which is defined as coupled plasticity-damage model with nonlinear softening. The second failure mode is seeking to capture the shearing of connection, which is defined as plasticity with linear hardening and nonlinear softening. The third failure mode pertains to the diffuse failure in the members; excluding it leads to linear elastic constitutive law. Theoretical formulation of this Timoshenko beam model and its finite element implementation are presented in the second section. The parameter identification procedure that will allow us to define eighteen unknown parameters is given in Section 3. The proposed methodology splits identification in three phases, with all details presented in Section 4 through three different examples. We also present the real experimental results. The conclusions are stated in the last section of the paper.

On the static stability of nonlocal nanobeams using higher-order beam theories

  • Eltaher, M.A.;Khater, M.E.;Park, S.;Abdel-Rahman, E.;Yavuz, M.
    • Advances in nano research
    • /
    • v.4 no.1
    • /
    • pp.51-64
    • /
    • 2016
  • This paper investigates the effects of thermal load and shear force on the buckling of nanobeams. Higher-order shear deformation beam theories are implemented and their predictions of the critical buckling load and post-buckled configurations are compared to those of Euler-Bernoulli and Timoshenko beam theories. The nonlocal Eringen elasticity model is adopted to account a size-dependence at the nano-scale. Analytical closed form solutions for critical buckling loads and post-buckling configurations are derived for proposed beam theories. This would be helpful for those who work in the mechanical analysis of nanobeams especially experimentalists working in the field. Results show that thermal load has a more significant impact on the buckling behavior of simply-supported beams (S-S) than it has on clamped-clamped (C-C) beams. However, the nonlocal effect has more impact on C-C beams that it does on S-S beams. Moreover, it was found that the predictions obtained from Timoshenko beam theory are identical to those obtained using all higher-order shear deformation theories, suggesting that Timoshenko beam theory is sufficient to analyze buckling in nanobeams.

Analytical study on post-buckling and nonlinear free vibration analysis of FG beams resting on nonlinear elastic foundation under thermo-mechanical loadings using VIM

  • Yaghoobi, Hessameddin;Valipour, Mohammad Sadegh;Fereidoon, Abdolhossein;Khoshnevisrad, Pooria
    • Steel and Composite Structures
    • /
    • v.17 no.5
    • /
    • pp.753-776
    • /
    • 2014
  • In this paper, nonlinear vibration and post-buckling analysis of beams made of functionally graded materials (FGMs) resting on nonlinear elastic foundation subjected to thermo-mechanical loading are studied. The thermo-mechanical material properties of the beams are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents, and to be temperature-dependent. The assumption of a small strain, moderate deformation is used. Based on Euler-Bernoulli beam theory and von-Karman geometric nonlinearity, the integral partial differential equation of motion is derived. Then this PDE problem which has quadratic and cubic nonlinearities is simplified into an ODE problem by using the Galerkin method. Finally, the governing equation is solved analytically using the variational iteration method (VIM). Some new results for the nonlinear natural frequencies and buckling load of the FG beams such as the influences of thermal effect, the effect of vibration amplitude, elastic coefficients of foundation, axial force, end supports and material inhomogenity are presented for future references. Results show that the thermal loading has a significant effect on the vibration and post-buckling response of FG beams.

Analytic responses of slender beams supported by rotationally restrained hinges during support motions

  • Ryu, Jeong Yeon;Kim, Yong-Woo
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2939-2948
    • /
    • 2020
  • This paper presents an analytic solution procedure of the rotationally restrained hinged-hinged beam subjected to transverse motions at supports based on EBT (Euler-Bernoulli beam theory). The EBT solutions are compared with the solutions based on TBT (Timoshenko beam theory) for a wide range of the rotational restraint parameter (kL/EI) of slender beams whose slenderness ratio is greater than 100. The comparison shows the followings. The internal loads such as bending moment and shearing force of an extremely thin beam obtained by EBT show a good agreement with those obtained by TBT. But the discrepancy between two solutions of internal loads tends to increase as the slenderness ratio decreases. A careful examination shows that the discrepancy of the internal loads originates from their dynamic components whereas their static components show a little difference between EBT and TBT. This result suggests that TBT should be employed even for slender beams to consider the rotational effect and the shear deformation effect on dynamic components of the internal loads. The influence of the parameter on boundary conditions is examined by manipulating the spring stiffness from zero to a sufficiently large value.