• Title/Summary/Keyword: Euler Bernoulli

Search Result 523, Processing Time 0.025 seconds

Vibration Characteristics of Tapered Piles Embedded in an Elastic Medium (탄성매체에 근입된 변단면 말뚝의 진동 특성)

  • Oh, Sang-Jin;Kang, Hee-Jong;Lee, Jae-Young;Park, Kwang-Kyou;Mo, Jeong-Man
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.832-835
    • /
    • 2005
  • The free vibration of tapered piles embedded in soil is investigated. The pile model is based on the Bernoulli-Euler beam theory and the soil is idealized as a Winkler model for mathematical simplicity. The governing differential equations for the free vibrations of such members are solved numerically. The square tapered piles with one free and the other hinged end with rotational spring are applied in numerical examples. The lowest two natural frequencies are obtained over a range of non-dimensional system parameters: the rotational spring parameter, the embedded ratio, the foundation parameter, the width ratio of the contact area and the section ratio.

  • PDF

Sound Radiation Analysis for Structure Vibration Noise Control of Vehicle Tire under The Action of Random Moving Line Forces (불규칙 이동분포하중을 받는 차량 타이어의 구조 진동소음 제어를 위한 음향방사 해석)

  • Kim Byoung-sam
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.221-224
    • /
    • 2004
  • A theoretical model has been studied to describe the sound radiation analysis for structure vibration noise of vehicle tires under the action of random moving line forces. When a tire is analyzed, it had been modeled as curved beams with distributed springs and dash pots that represent the radial , tangential stiffness and damping of tire, respectively. The reaction due to fluid loading on the vibratory response of the curved beam is taken into account. The curved beam is assumed to occupy the plane y=0 and to be axially infinite. The curved beam material and elastic foundation are assumed to be lossless Bernoulli-Euler beam theory including a tension force, damping coefficient and stiffness of foundation will be employed. The expression for sound power is integrated numerically and the results examined as a function of Mach number, wave-number ratio and stiffness factor. The experimental investigation for structure vibration noise of vehicle tire under the action of random moving line forces has been made. Based on the Spatial Transformation of Sound Field techniques, the sound power and sound radiation are measured. Results strongly suggest that operation condition in the tire material properties and design factors of the tire govern the sound power and sound radiation characteristics.

  • PDF

Stability Analysis of Cracked Cantilever Beam with Tip Mass and Follower Force (끝단질량과 종동력을 가진 크랙 외팔 보의 안정성 해석)

  • Son, In-Soo;Yoon, Han-Ik;Ahn, Tae-Su
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.7 s.124
    • /
    • pp.605-610
    • /
    • 2007
  • In this paper a dynamic behavior(natural frequency) of a cracked cantilever beam subjected to follower force is presented. In addition, an analysis of the flutter and buckling instability of a cracked cantilever beam subjected to a follower compressive load is presented. Based on the Euler-Bernoulli beam theory, the equation of motion can be constructed by using the Lagrange's equation. The vibration analysis on such cracked beam is conducted to identify the critical follower force for flutter instability based on the variation of the first two resonant frequencies of the beam. Besides, the effect of the crack's intensity and location on the flutter follower force is studied. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations.

Wave propagation in a microbeam based on the modified couple stress theory

  • Kocaturk, Turgut;Akbas, Seref Doguscan
    • Structural Engineering and Mechanics
    • /
    • v.46 no.3
    • /
    • pp.417-431
    • /
    • 2013
  • This paper presents responses of the free end of a cantilever micro beam under the effect of an impact force based on the modified couple stress theory. The beam is excited by a transverse triangular force impulse modulated by a harmonic motion. The Kelvin-Voigt model for the material of the beam is used. The considered problem is investigated within the Bernoulli-Euler beam theory by using energy based finite element method. The system of equations of motion is derived by using Lagrange's equations. The obtained system of linear differential equations is reduced to a linear algebraic equation system and solved in the time domain by using Newmark average acceleration method. In the study, the difference of the modified couple stress theory and the classical beam theory is investigated for the wave propagation. A few of the obtained results are compared with the previously published results. The influences of the material length scale parameter on the wave propagation are investigated in detail. It is clearly seen from the results that the classical beam theory based on the modified couple stress theory must be used instead of the classical theory for small values of beam height.

Monitoring of wind turbine blades for flutter instability

  • Chen, Bei;Hua, Xu G.;Zhang, Zi L.;Basu, Biswajit;Nielsen, Soren R.K.
    • Structural Monitoring and Maintenance
    • /
    • v.4 no.2
    • /
    • pp.115-131
    • /
    • 2017
  • Classical flutter of wind turbine blades indicates a type of aeroelastic instability with fully attached boundary layer where a torsional blade mode couples to a flapwise bending mode, resulting in a mutual rapid growth of the amplitudes. In this paper the monitoring problem of onset of flutter is investigated from a detection point of view. The criterion is stated in terms of the exceeding of a defined envelope process of a specific maximum torsional vibration threshold. At a certain instant of time, a limited part of the previously measured torsional vibration signal at the tip of blade is decomposed through the Empirical Mode Decomposition (EMD) method, and the 1st Intrinsic Mode Function (IMF) is assumed to represent the response in the flutter mode. Next, an envelope time series of the indicated modal response is obtained in terms of a Hilbert transform. Finally, a flutter onset criterion is proposed, based on the indicated envelope process. The proposed online flutter monitoring method provided a practical and direct way to detect onset of flutter during operation. The algorithm has been illustrated by a 907-DOFs aeroelastic model for wind turbines, where the tower and the drive train is modelled by 7 DOFs, and each blade by means of 50 3-D Bernoulli-Euler beam elements.

Bending of a cracked functionally graded nanobeam

  • Akbas, Seref Doguscan
    • Advances in nano research
    • /
    • v.6 no.3
    • /
    • pp.219-242
    • /
    • 2018
  • In this study, static bending of an edge cracked cantilever nanobeam composed of functionally graded material (FGM) subjected to transversal point load at the free end of the beam is investigated based on modified couple stress theory. Material properties of the beam change in the height direction according to exponential distributions. The cracked nanobeam is modelled using a proper modification of the classical cracked-beam theory consisting of two sub-nanobeams connected through a massless elastic rotational spring. The inclusion of an additional material parameter enables the new beam model to capture the size effect. The new non-classical beam model reduces to the classical beam model when the length scale parameter is set to zero. The considered problem is investigated within the Euler-Bernoulli beam theory by using finite element method. In order to establish the accuracy of the present formulation and results, the deflections are obtained, and compared with the published results available in the literature. Good agreement is observed. In the numerical study, the static deflections of the edge cracked FGM nanobeams are calculated and discussed for different crack positions, different lengths of the beam, different length scale parameter, different crack depths, and different material distributions. Also, the difference between the classical beam theory and modified couple stress theory is investigated for static bending of edge cracked FGM nanobeams. It is believed that the tabulated results will be a reference with which other researchers can compare their results.

A dynamic finite element method for the estimation of cable tension

  • Huang, Yonghui;Gan, Quan;Huang, Shiping;Wang, Ronghui
    • Structural Engineering and Mechanics
    • /
    • v.68 no.4
    • /
    • pp.399-408
    • /
    • 2018
  • Cable supported structures have been widely used in civil engineering. Cable tension estimation has great importance in cable supported structures' analysis, ranging from design to construction and from inspection to maintenance. Even though the Bernoulli-Euler beam element is commonly used in the traditional finite element method for calculation of frequency and cable tension estimation, many elements must be meshed to achieve accurate results, leading to expensive computation. To improve the accuracy and efficiency, a dynamic finite element method for estimation of cable tension is proposed. In this method, following the dynamic stiffness matrix method, frequency-dependent shape functions are adopted to derive the stiffness and mass matrices of an exact beam element that can be used for natural frequency calculation and cable tension estimation. An iterative algorithm is used for the exact beam element to determine both the exact natural frequencies and the cable tension. Illustrative examples show that, compared with the cable tension estimation method using the conventional beam element, the proposed method has a distinct advantage regarding the accuracy and the computational time.

Analytical solution of free vibration of FG beam utilizing different types of beam theories: A comparative study

  • AlSaid-Alwan, Hiyam Hazim Saeed;Avcar, Mehmet
    • Computers and Concrete
    • /
    • v.26 no.3
    • /
    • pp.285-292
    • /
    • 2020
  • In engineering structures, to having the projected structure to serve all the engineering purposes, the theory to be used during the modeling stage is also of great importance. In the present work, an analytical solution of the free vibration of the beam composed of functionally graded materials (FGMs) is presented utilizing different beam theories. The comparison of supposed beam theory for free vibration of functionally graded (FG) beam is examined. For this aim, Euler-Bernoulli, Rayleigh, Shear, and Timoshenko beam theories are employed. The functionally graded material properties are assumed to vary continuously through the thickness direction of the beam with respect to the volume fraction of constituents. The governing equations of free vibration of FG beams are derived in the frameworks of four beam theories. Resulting equations are solved versus simply supported boundary conditions, analytically. To verify the results, comparisons are carried out with the available results. Parametrical studies are performed for discussing the effects of supposed beam theory, the variation of beam characteristics, and FGM properties on the free vibration of beams. In conclusion, it is found that the interaction between FGM properties and the supposed beam theory is of significance in terms of free vibration of the beams and that different beam theories need to be used depending on the characteristics of the beam in question.

Dynamic response of a Timoshenko beam on a tensionless Pasternak foundation

  • Coskun, Irfan;Engin, Hasan;Tekin, Ayfer
    • Structural Engineering and Mechanics
    • /
    • v.37 no.5
    • /
    • pp.489-507
    • /
    • 2011
  • The dynamic response of a Timoshenko beam on a tensionless Pasternak foundation is investigated by assuming that the beam is subjected to a concentrated harmonic load at its middle. This action results in the creation of lift-off regions between the beam and the foundation that effect the character of the response. Although small displacements for the beam and the foundation are assumed, the problem becomes nonlinear since the contact/lift-off regions are not known at the outset. The governing equations of the beam, which are coupled in deflection and rotation, are obtained in both the contact and lift-off regions. After removing the coupling, the essentials of the problem (the contact regions) are determined by using an analytical-numerical method. The results are presented in figures to demonstrate the effects of some parameters on the extent of the contact lengths and displacements. The results are also compared with those of Bernoulli-Euler, shear, and Rayleigh beams. It is observed that the solution is not unique; for a fixed value of the frequency parameter, more than one solution (contact length) exists. The contact length of the beam increases with the increase of the frequency and rotary-inertia parameters, whereas it decreases with increasing shear foundation parameter.

Vibrations of wind-turbines considering soil-structure interaction

  • Adhikari, S.;Bhattacharya, S.
    • Wind and Structures
    • /
    • v.14 no.2
    • /
    • pp.85-112
    • /
    • 2011
  • Wind turbine structures are long slender columns with a rotor and blade assembly placed on the top. These slender structures vibrate due to dynamic environmental forces and its own dynamics. Analysis of the dynamic behavior of wind turbines is fundamental to the stability, performance, operation and safety of these systems. In this paper a simplied approach is outlined for free vibration analysis of these long, slender structures taking the soil-structure interaction into account. The analytical method is based on an Euler-Bernoulli beam-column with elastic end supports. The elastic end-supports are considered to model the flexible nature of the interaction of these systems with soil. A closed-form approximate expression has been derived for the first natural frequency of the system. This new expression is a function of geometric and elastic properties of wind turbine tower and properties of the foundation including soil. The proposed simple expression has been independently validated using an exact numerical method, laboratory based experimental measurement and field measurement of a real wind turbine structure. The results obtained in the paper shows that the proposed expression can be used for a quick assessment of the fundamental frequency of a wind turbine taking the soil-structure interaction into account.