• Title/Summary/Keyword: Euler Bernoulli

Search Result 523, Processing Time 0.027 seconds

Thermal-induced nonlocal vibration characteristics of heterogeneous beams

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Advances in materials Research
    • /
    • v.6 no.2
    • /
    • pp.93-128
    • /
    • 2017
  • In this paper, thermal vibration behavior of nanoscale beams made of functionally graded (FG) materials subjected to various types of thermal loading are investigated. A Reddy shear deformation beam theory which captures both the microstructural and shear deformation effects without the need for any shear correction factors is employed. Material properties of FG nanobeam are assumed to be temperature-dependent and vary gradually along the thickness according to the power-law form. The influence of small scale is captured based on nonlocal elasticity theory of Eringen. The nonlocal equations of motion are derived through Hamilton's principle and they are solved applying analytical solution. The comparison of the obtained results is conducted with those of nonlocal Euler-Bernoulli beam theory and it is demonstrated that the proposed modeling predict correctly the vibration responses of FG nanobeams. The effects of nonlocal parameter, material graduation, mode number, slenderness ratio and thermal loading on vibration behavior of the nanobeams are studied in detail.

Nondestructive damage evaluation of deep beams

  • Dincal, Selcuk;Stubbs, Norris
    • Structural Monitoring and Maintenance
    • /
    • v.4 no.3
    • /
    • pp.269-299
    • /
    • 2017
  • This paper presents a Level III damage evaluation methodology, which simultaneously, identifies the location, the extent, and the severity of stiffness damage in deep beams. Deep beams are structural elements with relatively high aspect (depth-to-length) ratios whose response are no longer based on the simplified Euler-Bernoulli theory. The proposed methodology is developed on the bases of the force-displacement relations of the Timoshenko beam theory and the concept of invariant stress resultants, which states that the net internal force existing at any cross-section of the beam is not affected by the inflicted damage, provided that the external loadings in the undamaged and damaged beams are identical. Irrespective of the aspect ratios, local changes in both the flexural and the shear stiffnesses of beam-type structures may be detected using the approach presented in this paper.

Numerical study for vibration response of concrete beams reinforced by nanoparticles

  • Heidari, Ali;Keikha, Reza;Haghighi, Mohammad Salkhordeh;Hosseinabadi, Hamidreza
    • Structural Engineering and Mechanics
    • /
    • v.67 no.3
    • /
    • pp.311-316
    • /
    • 2018
  • Vibration of concrete beams reinforced by agglomerated silicon dioxide ($SiO_2$) nanoparticles is studied based on numerical methods. The structure is simulated by Euler-Bernoulli beam model and the Mori-Tanaka model is used for obtaining the effective material properties of the structure. The concrete beam is located in soil medium which is modeled by spring elements. The motion equations are derived based on energy method and Hamilton's principle. Based on exact solution, the frequency of the structure is calculated. The effects of different parameters such as volume percent of $SiO_2$ nanoparticles and agglomeration, soil medium and geometrical parameters of beam are shown on the frequency of system. The results show that with increasing the volume percent of $SiO_2$ nanoparticles, the frequency increases.

Single variable shear deformation model for bending analysis of thick beams

  • Abdelbari, Salima;Amar, Lemya Hanifi Hachemi;Kaci, Abdelhakim;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.67 no.3
    • /
    • pp.291-300
    • /
    • 2018
  • In this work, a new trigonometry theory of shear deformation is developed for the static analysis of thick isotropic beams. The number of variables used in this theory is identical to that required in the theory of Euler-Bernoulli, sine function is used in the displacement field in terms of the coordinates of the thickness to represent the effects of shear deformation. The advantage of this theory is that shear stresses can be obtained directly from the relationships constitute, while respecting the boundary conditions at the free surface level of the beam. Therefore, this theory avoids the use of shear correction coefficients. The differential equilibrium equations are obtained using the principle of virtual works. A thick isotropic beam is considered, whose numerical study to show the effectiveness of this theory.

Theoretical Modeling and Dynamic Characteristics of a Cantilever IPMC Actuator (외팔보형 IPMC 구동기의 이론적 모델링과 구동특성)

  • Han, Dae-Woong;Lee, Seung-Yop;Cho, Sang-Ho
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1521-1526
    • /
    • 2008
  • IPMC(Ionic Polymer-Metal Comosite) exhibits large deformation, having great attention in many application fields. It generates bending moment by ion exchange polymer film. It can be quickly bended by the applied voltage across the plated electrode of the polymer film. In the present paper, we derive the theoretical modeling and dynamic analysis of bending motions of IPMC actuators using the Euler-Bernoulli beam theory. The theoretical model of a cantilever IPMC actuator estimates the moment produced by the applied voltage. The dynamic characteristics, including natural frequencies and frequency response, are calculated by the theoretical model, and they are compared with the experimental results and finite element analysis. It is shown that the mathematical modeling allows precise estimation to the voltage-driven motion of the cantilever IPMC in air.

  • PDF

Series tuned mass dampers in train-induced vibration control of railway bridges

  • Kahya, Volkan;Araz, Onur
    • Structural Engineering and Mechanics
    • /
    • v.61 no.4
    • /
    • pp.453-461
    • /
    • 2017
  • This paper presents the series multiple tuned mass dampers (STMDs) to suppress the resonant vibrations of railway bridges under the passage of high-speed trains (HSTs). A STMD device consisting of two spring-mass-damper units connected each other in series is installed on the bridge. In solution, bridge is modeled as a simply-supported Euler-Bernoulli beam with constant cross-section, and vehicle is simulated as a series of moving forces with constant speed. By the assumed mode method, the governing equations of motion of the beam-TMD device coupled system traversed by a moving train are obtained. The optimum values for the parameters of the STMD device are obtained for the criterion based on the minimization of the maximum dynamic displacement of the beam at its midspan. Single TMD and multiple TMDs in parallel are also considered for demonstration of the STMD device's performance. The results show that STMDs are effective in bridge vibration suppression and robust to parameters' change in the main system and the absorber itself.

A new broadband energy harvester using propped cantilever beam with variable overhang

  • Usharani, R.;Uma, G.;Umapathy, M.;Choi, S.B.
    • Smart Structures and Systems
    • /
    • v.19 no.5
    • /
    • pp.567-576
    • /
    • 2017
  • Design of piezoelectric energy harvester for a wide operating frequency range is a challenging problem and is currently being investigated by many researchers. Widening the operating frequency is required, as the energy is harvested from ambient source of vibration which consists of spectrum of frequency. This paper presents a new technique to increase the operating frequency range which is achieved by designing a harvester featured by a propped cantilever beam with variable over hang length. The proposed piezoelectric energy harvester is modeled analytically using Euler Bernoulli beam theory and the effectiveness of the harvester is demonstrated through experimentation. The results from analytical model and from experimentation reveal that the proposed energy harvester generates an open circuit output voltage ranging from 36.43 V to 11.94 V for the frequency range of 27.24 Hz to 48.47 Hz. The proposed harvester produces continuously varying output voltage and power in the broadened operating frequency range.

Forced Vibration Analysis of Elastically Restrained Valve-pipe System (탄성지지된 밸브 배관계의 강제진동 특성)

  • Son, In-Soo;Yoon, Han-Ki;Min, Byoung-Hyun;Hur, Kwan-Do
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.4
    • /
    • pp.90-96
    • /
    • 2012
  • The forced vibration response characteristics of a elastically restrained pipe conveying fluid with attached mass are investigated in this paper. Based on the Euler-Bernoulli beam theory, the equation of motion is derived by using Hamilton's principle. The effects of attached mass and spring constant on the forced vibration characteristics of pipe at conveying fluid are studied. The forced deflection response of pipe with attached mass due to the variation of fluid velocity is also presented. The deflection response is the mid-span deflection of the pipe. The dimensionless forcing frequency is the range from 0 to 16 which is the first natural frequency of the pipe.

A Study on the Static Rigidity of the End Mill (엔드밀의 정적 강성에 관한 연구)

  • 이상규;고성림
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.9-14
    • /
    • 1996
  • The deflection of an end mill is very important in machining process and cutting simulation because it affects directly workpiece accuracy, cutting force, and chattering. In this study, the deflection of the end mill was studied both experimentally and by using finite element analysis. And the moment of inertia of radial cross sections of tile helical end mill is calculated for the determination of the relation between cross section and rigidity of tile tools. Using tile Bernoulli-Euler beam and and the concept of equivalent diameter, a deflection model is established, which includes most influence from tool geomety parameters. It was found that helix angle attenuates the rigidity of the end mill.

  • PDF

Nonlinear Vibration Characteristics of a Curved Pipe with Fixed Ends and Steady Internal Flow (정상 상태 내부 유동이 있는 양단 고정 곡선 파이프의 비선형 진동 특성)

  • Lee, Su-Il;Jeong, Jin-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.1
    • /
    • pp.61-66
    • /
    • 2002
  • The nonlinear differential equations of motion of a fluid conveying curved pipe are derived by use of Hamiltonian approach. The extensible dynamics of curled pipe is based on the Euler-Bernoulli beam theory. Some significant differences between linear and nonlinear equations and the dynamic characteristics are discussed. Generally, it can be shown that the natural frequencies in curved pipes are changed with flow velocity. Linearized natural frequencies of nonlinear equations are slightly different from those of linear equations.