• Title/Summary/Keyword: Euler Bernoulli

Search Result 523, Processing Time 0.032 seconds

Bending Vibration Analysis of Width Tapered Beams with Concentrated Tip Mass (집중 질량을 갖는 폭 변단면 외팔보의 굽힘 진동 해석)

  • Lee, Jung Woo;Kwak, Jong Hoon;Lee, Jung Youn
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.12
    • /
    • pp.822-829
    • /
    • 2015
  • A transfer matrix method has been developed to determine the more accurate natural frequencies for the bending vibration of Bernoulli-Euler beam with linearly reduced width and a concentrated tip mass. The proposed method can be computed an infinite number of the natural frequencies using a single element. Using the differential equation, shear force, and bending moment in which can be deduced by the diverse variational principles, a transfer matrix is formulated. The roots of the differential equation are computed by the Frobenius method. The effect of the concentrated mass for the natural frequencies of width-tapered beams is examined through a parametric study, and to show the accuracy of the proposed method, the computed results compared with those obtained from commercial finite element analysis program(ANSYS).

Development of super convergent Euler finite elements for the analysis of sandwich beams with soft core

  • Sudhakar, V;Gopalkrishnan, S;Vijayaraju, K
    • Structural Engineering and Mechanics
    • /
    • v.65 no.6
    • /
    • pp.657-678
    • /
    • 2018
  • Sandwich structures are well known for their use in aircraft, naval and automobile industries due to their high strength resistance with light weight and high energy absorption capability. Sandwich beams with soft core are very common and simple structures that are employed in day to day general use appliances. Modeling and analysis of sandwich structures is not straight forward due to the interactions between core and face sheets. In this paper, formulation of Super Convergent finite elements for analysis of the sandwich beams with soft core based on Euler Bernoulli beam theory are presented. Two elements, Eul4d with 4 degrees of freedom assuming rigid core in transverse direction and Eul10d with 10 degrees of freedom assuming the flexible core were developed are presented. The formulation considers the top, bottom face sheets and core as separate entities and are coupled by beam kinematics. The performance of these elements are validated by results available in the published literature. Number of studies are performed using the formulated elements in static, free vibration and wave propagation analysis involving various boundary and loading conditions. The paper highlights the advantages of the elements developed over the traditional elements for modeling of sandwich beams and, in particular wave propagation analysis.

Vibration Analysis of the Beam Structure with a Moving Mass (이동물체에 의한 보 구조물의 진동 해석)

  • 이우식;임강민
    • Computational Structural Engineering
    • /
    • v.8 no.4
    • /
    • pp.57-64
    • /
    • 1995
  • This paper introduced a simple numerical analysis algorithm for the calculation of the dynamic responses of the beam structure with a moving mass. The dynamic equation of motion of the Bernoulli-Euler beam is derived by considering the moving mass as a moving particle, and the dynamic equation of motion is transformed into an integro-differential equation by use of the structural influence function. The numerical solutions of the integro-differential equation are obtained by the modal analysis approach, and compared with those cited from well-known references. The proves that the numerical analysis algorithm proposed herein provide very reliable results, and thus it can be utilized in the design analysis of the beamlike structures exited by a mass which is traveling on it.

  • PDF

Buckling analysis of noncontinuous linear and quadratic axially graded Euler beam subjected to axial span-load in the presence of shear layer

  • Heydari, Abbas
    • Advances in Computational Design
    • /
    • v.5 no.4
    • /
    • pp.397-416
    • /
    • 2020
  • Functionally graded material (FGM) illustrates a novel class of composites that consists of a graded pattern of material composition. FGM is engineered to have a continuously varying spatial composition profile. Current work focused on buckling analysis of beam made of stepwise linear and quadratic graded material in axial direction subjected to axial span-load with piecewise function and rested on shear layer based on classical beam theory. The various boundary and natural conditions including simply supported (S-S), pinned - clamped (P-C), axial hinge - pinned (AH-P), axial hinge - clamped (AH-C), pinned - shear hinge (P-SHH), pinned - shear force released (P-SHR), axial hinge - shear force released (AH-SHR) and axial hinge - shear hinge (AH-SHH) are considered. To the best of the author's knowledge, buckling behavior of this kind of Euler-Bernoulli beams has not been studied yet. The equilibrium differential equation is derived by minimizing total potential energy via variational calculus and solved analytically. The boundary conditions, natural conditions and deformation continuity at concentrated load insertion point are expressed in matrix form and nontrivial solution is employed to calculate first buckling loads and corresponding mode shapes. By increasing truncation order, the relative error reduction and convergence of solution are observed. Fast convergence and good compatibility with various conditions are advantages of the proposed method. A MATLAB code is provided in appendix to employ the numerical procedure based on proposed method.

Exact Solution for Bending Vibration of Rotating Cantilever Beam with Tapered Width Using Transfer Matrix Method (전달행렬법을 이용하여 폭이 테이퍼진 회전하는 외팔보의 정확한 굽힘 진동해석)

  • Lee, Jung Woo;Kwak, Jong Hoon;Lee, Jung Youn
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.1
    • /
    • pp.75-81
    • /
    • 2016
  • In this study, a transfer matrix method in which can produce an infinite number of accurate natural frequencies using a single element for the bending vibration of rotating Bernoulli-Euler beam with linearly reduced width, is developed. The roots of the differential equation in the proposed method are calculated using the Frobenius method in the power series solution. To demonstrate the accuracy of the method, the calculated natural frequencies are compared with the results given by using the commercial finite element analysis program(ANSYS), and the comparison results between these two methods show the excellent agreement. Based on the comparison results, a parametric study is performed to investigate the effect of the centrifugal forces on the non-dimensional natural frequencies for rotating beam with the variable width.

Relationship Between CFRP Ply Orientation and Performance Stroke in Piezoelectric Zirconate Titanate Composite Actuator(PZTCA) of Artificial Muscle (인공근육에 적용되는 압전복합재료 작동기의 탄소섬유 배향각과 작동변위의 관계)

  • Kim Cheol-Woong;Lee Sung-Hyuk;Yoon Kwang-Joon
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.641-644
    • /
    • 2005
  • The aim of this research is to evaluate the relationship between the total effective moment $(M^E)$ and Bemoulli-Euler bending moment (M) when the ply orientations of UD CFRP in Piezoelectric Zirconate Titanate Composite Actuator (PZTCA) are changed. The obtained results as follows. Firstly, as the performance test results by the CFRP ply orientation, the performance of [0] and [90] were stable. However, while the performance of [+45] was suddenly decreased after 5 hours. Secondly, the change of $M^E$ by the CFRP ply orientation was evaluated. As the CFRP ply orientation was increased from [0] to [+60], the $M^E$ were gradually decreased. However, they became a little bit increased from [+60] to [90]. Finally, after the change of M by the CFRP ply orientation was evaluated, it was found that $M^E=2.2M$ was valid for just [0] and that there was a relationship between $M^E$ and M according to the ply orientation.

  • PDF

On the resonance problems in FG-GPLRC beams with different boundary conditions resting on elastic foundations

  • Hao-Xuan, Ding;Yi-Wen, Zhang;Gui-Lin, She
    • Computers and Concrete
    • /
    • v.30 no.6
    • /
    • pp.433-443
    • /
    • 2022
  • In the current paper, the nonlinear resonance response of functionally graded graphene platelet reinforced (FG-GPLRC) beams by considering different boundary conditions is investigated using the Euler-Bernoulli beam theory. Four different graphene platelets (GPLs) distributions including UD and FG-O, FG-X, and FG-A are considered and the effective material parameters are calculated by Halpin-Tsai model. The nonlinear vibration equations are derived by Euler-Lagrange principle. Then the perturbation method is used to discretize the motion equations, and the loadings and displacement are all expanded, so as to obtain the first to third order perturbation equations, and then the asymptotic solution of the equations can be obtained. Then the nonlinear amplitude-frequency response is obtained with the help of the modified Lindstedt-Poincare method (Chen and Cheung 1996). Finally, the influences of the distribution types of GPLs, total GPLs layers, GPLs weight fraction, elastic foundations and boundary conditions on the resonance problems are comprehensively studied. Results show that the distribution types of GPLs, total GPLs layers, GPLs weight fraction, elastic foundations and boundary conditions have a significant effect on the nonlinear resonance response of FG-GPLRC beams.

Analysis of Stability and Dynamic Behaviour of Cracked Cantilever T-beams Subjected to Axial Force (축압축력을 받는 T형상 크랙 보의 안정성 및 동특성 해석)

  • Son, In-Soo;Jo, Jeng-Rae;Yoon, Han-Ik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.5
    • /
    • pp.453-459
    • /
    • 2010
  • In this paper, the purpose is to investigate the stability of cracked cantilever T-beams subjected to axial force. In addition, an analysis of the natural frequency of a cracked beams as crack position, crack depth and tip mass is investigated. Based on the Euler-Bernoulli beam theory, the equation of motion is derived by the energy expressions using extended Hamilton's Principle. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. The results of this study will contribute to the safety test and stability estimation of structures of a cracked T-beams subjected to axial force.

Hierarchical theories for a linearised stability analysis of thin-walled beams with open and closed cross-section

  • Giunta, Gaetano;Belouettar, Salim;Biscani, Fabio;Carrera, Erasmo
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.3
    • /
    • pp.253-271
    • /
    • 2014
  • A linearised buckling analysis of thin-walled beams is addressed in this paper. Beam theories formulated according to a unified approach are presented. The displacement unknown variables on the cross-section of the beam are approximated via Mac Laurin's polynomials. The governing differential equations and the boundary conditions are derived in terms of a fundamental nucleo that does not depend upon the expansion order. Classical beam theories such as Euler-Bernoulli's and Timoshenko's can be retrieved as particular cases. Slender and deep beams are investigated. Flexural, torsional and mixed buckling modes are considered. Results are assessed toward three-dimensional finite element solutions. The numerical investigations show that classical and lower-order theories are accurate for flexural buckling modes of slender beams only. When deep beams or torsional buckling modes are considered, higher-order theories are required.

Forced vibration analysis of a dam-reservoir interaction problem in frequency domain

  • Keivani, Amirhossein;Shooshtari, Ahmad;Sani, Ahmad Aftabi
    • Interaction and multiscale mechanics
    • /
    • v.6 no.4
    • /
    • pp.357-375
    • /
    • 2013
  • In this paper, the forced vibration problem of an Euler-Bernoulli beam that is joined with a semi-infinite field of a compressible fluid is considered as a boundary value problem (BVP). This BVP includes two partial differential equations (PDE) and some boundary conditions (BC), which are introduced comprehensively. After that, the closed-form solution of this fluid-structure interaction problem is obtained in the frequency domain. Some mathematical techniques are utilized, and two unknown functions of the BVP, including the beam displacement at each section and the fluid dynamic pressure at all points, are attained. These functions are expressed as an infinite series and evaluated quantitatively for a real example in the results section. In addition, finite element analysis is carried out for comparison.