• Title/Summary/Keyword: Euler

Search Result 1,660, Processing Time 0.026 seconds

Coordination Pattern of Upper Limb of Sweep Shot Movement in Ice Hockey (아이스하키 스위프 샷(Sweep shot) 동작의 상지의 협응 형태)

  • Choi, Ji-Young;Lee, Eui-Lin
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.4
    • /
    • pp.169-179
    • /
    • 2007
  • The purpose of this study was to investigate the relations between the segments of the body and to qualitatively analyze coordination pattern of joints and segments during Sweep Shot movement in Ice Hockey, by utilizing coordination variables was angle vs. angle plots. By the utilization the three dimensional anatomical angle cinematography, the angles of individual joint and segment according to sweep shot in ice hockey. The subjects of this study were five professional ice hockey players. The reflective makers were attached on anatomical boundary line of body. For the movement analysis three dimensional cinematographical method(APAS) was used and for the calculation of the kinematic variables a self developed program was used with the LabVIEW 6.1 graphical programming(Johnson, 1999) program. By using Eular's equations the three dimensional anatomical Cardan angles of the joint and ice hockey stick were defined. The three dimensional anatomical angular displacement and coordination pattern of trunk and Upper limb(shoulder-elbow, elbow-wrist linked system) showed important role of sweep shot in ice hockey. As the result of this paper, for the successful movement of sweep shot in ice hockey, it is most important role of coordination pattern of trunk-shoulder, shoulder-elbow and elbow-wrist. specially turnk movememt as a proximal segment. Coordination pattern of Upper Limb(upperarm-forearm-hand) of Sweep Shot movement in Ice Hockey that utilizes coordination variables seems to be one of useful research direction to understand basic control mechanisms of Ice hockey sweep shooting linked system skill. this study result showed flexion-extension, adduction-abduction and internal-external rotation of trunk are important role of power and shooting direction coordination pattern of upper Limb of Sweep Shot movement in Ice Hockey.

A study on the estimation of acoustic performance of exhaust system with 3 dimensional visco-convective wave equation and dopplerized algorithm (3차원 대류 파동 방정식과 도플러 알고리즘을 이용한 배기계의 소음 성능 예측에 관한 연구)

  • Jang, Jin-Man;Kim, June-Wan;Kim, Joong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.821-832
    • /
    • 2011
  • Recently, the noise of vehicle is the one of the key factors for customers to purchase a vehicle and the most important part which is related to the noise is the exhaust system. Thus, car makers have their own ways to assess this exhaust noise not only to decrease the level of noise but to enhance the feeling of it. Typically, to do these things in the early stage of development, the tuning code of the exhaust system has to be made by CAE tool, which is very reliable but expensive, and the prototype parts of this code would be made for the validation test. Then this process can be iterated to meet the target of the performance. In this study, a new algorithm which adapts the '3 dimensional convective sound wave theory 'and 'Doppler effect' has been developed. With this new algorithm, a brand new system for the calculation of tail pipe noise has been developed and validated by acoustic wind tunnel test. As a result of this study, various comparisons and have been carried out, for example, the comparison with other CAE tool has been performed for the validity and the improvement of the new calculation code could be achieved.

  • PDF

Kinematics of an Intrinsic Continuum Robot with Pneumatic Artificial Muscles (공압인공근육을 가진 내부형 연속체로봇의 기구식)

  • Kang, Bong Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.3
    • /
    • pp.289-296
    • /
    • 2016
  • This study presents the kinematics of an intrinsic continuum robot actuated by pneumatic artificial muscles. The single section of a developed continuum robot consisted of three muscles in parallel. The contraction of each muscle according to applied air pressure produced spatial motions of a distal plate with respect to a base plate. Based on the bending behaviors of artificial muscles, the orientation and position of the end-effector of a continuum robot were formulated using a transformation matrix. The orientation and position was also determined for a single section of the distal plate. A Jacobian matrix relating the contraction rate or the pressure rate of the muscles to the velocity vector of the end-effector was calculated considering the assembled position of actuators between neighboring sections of the robot. Experimental results showed that the motions of the intrinsic continuum robot were accurately estimated by the proposed kinematics.

A Study on the Impulse Waves Discharged from the Exit of the Convergent and Divergent Pipes (축소관과 확대관 출구로부터 방출되는 펄스파에 관한 연구)

  • Lee, D.H.;Lee, M.H.;Kweon, Y.H.;Kim, H.D.;Park, J.H.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.5
    • /
    • pp.346-354
    • /
    • 2002
  • The present study is to investigate the propagation characteristics of the impulse waves discharged from the exit of the convergent and divergent pipes. An experiment is carried out using a shock tube with an open end and is compared to the computation of the axisymmetric, compressible, unsteady Euler equations, which are solved by the second-order total variation diminishing (TVD) scheme. For the computational work, several initial compression waves are assumed inside the pipe so that those are the same to the experimental ones of the shock tube. The results show that the peak pressures of the impulse waves discharged from the exit of convergent and divergent pipes decrease with an increase in the wavelength of the initial compression wave. All of the impulse waves have a strong directivity toward the pipe axis, regardless of the exit type of the pipe employed. The impulse waves discharged from the divergent pipe are stronger than those from the straight pipe, while the impulse waves of the convergent pipe are weaker than those from the straight pipe. It is found that the convergent pipe can play a role of a passive control to reduce the peak pressure of the impulse wave. The present computations represent the experimented impulse waves with a good accuracy.

Simulation of Unsteady Rotor-Fuselage Aerodynamic Interaction Using Unstructured Adaptive Meshes (비정렬 적응 격자계를 이용한 비정상 로터-동체 공력 상호작용 모사)

  • Nam, H.-J.;Park, Y.-M.;Kwon, O.-J.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.11-21
    • /
    • 2005
  • A three-dimensional parallel Euler flow solver has been developed for the simulation of unsteady rotor-fuselage interaction aerodynamics on unstructured meshes. In order to handle the relative motion between the rotor and the fuselage, the flow field was divided into two zones, a moving zone rotating with the blades and a stationary zone containing the fuselage. A sliding mesh algorithm was developed for the convection of the flow variables across the cutting boundary between the two zones. A quasi-unsteady mesh adaptation technique was adopted to enhance the spatial accuracy of the solution and to better resolve the wake. A low Mach number pre-conditioning method was implemented to relieve the numerical difficulty associated with the low-speed forward flight. Validations were made by simulating the flows around the Georgia Tech configuration and the ROBIN fuselage. It was shown that the present method is efficient and robust for the prediction of complicated unsteady rotor-fuselage aerodynamic interaction phenomena.

Linear Shallow Water Equations for Waves with Damping (파랑 에너지 감쇠가 있는 경우의 선형천수방정식)

  • Jung, Tae-Hwa;Lee, Chang-Hoon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.1
    • /
    • pp.10-15
    • /
    • 2012
  • Wave characteristics in the presence of energy damping are investigated using the linear shallow water equations. To get the phase and energy velocities, geometric optics approach is used and then these values are validated through numerical experiments. Energy damping affects wave height, phase and energy velocities which result in wave transformation. When the complex wavenumber is used by the Eulerian approach, it is found that the phase velocity decreases as the damping increases while the energy velocity increases showing higher values than the phase velocity. When the complex angular frequency is used by the Lagrangian approach, the energy-damping wave group is found to propagate in the energy velocity. The energy velocity is found to affect shoaling and refraction coefficient which is verified through numerical experiments for waves on a plane slope.

Dynamic Modeling and Sensitivity Analysis for Predicting the Pseudomonas spp. Concentration in Alaska Pollack along the Distribution Path (명태 유통 중 Pseudomonas spp. 농도의 예측 모델링과 민감도 분석)

  • Shim, Soo-Dong;Sung, Jae-Ung;Lee, Jung-Young;Lee, Da-Sun;Kim, Seon-Bong;Hong, Kwang-Won;Lee, Yang-Bong;Lee, Seung-Ju
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.43 no.3
    • /
    • pp.205-210
    • /
    • 2010
  • Dynamic modeling was used to predict the Pseudomonas spp. concentration in Alaska pollack under dynamic temperature conditions in a programmable incubator using Euler's method. The model evaluation showed good agreement between the predicted and measured concentrations of Pseudomonas spp. In the simulation, three kinds of distribution path were assumed: consumers buying from a distribution center (A), manufacturer (B), or direct market (C). Each of these distribution paths consists of six phases: shipping, warehousing/shipment, warehousing/storing, processing, market exhibition, and sale/consumption. Sensitivity analysis of each phase was also implemented. The Pseudomonas concentrations and sensitivities ($S_k$) at the terminal phases of the three paths were estimated to be (A) 11.174 log CFU/g and 10.550 log $S_k$, (B) 10.948 log CFU/g and 10.738 log $S_k$, and (C) 8.758 log CFU/g and 9.602 log $S_k$, respectively. The sensitivities indicated that path A has the highest risk of failure in managing the relevant phases.

A comparative study for beams on elastic foundation models to analysis of mode-I delamination in DCB specimens

  • Shokrieh, Mahmood Mehrdad;Heidari-Rarani, Mohammad
    • Structural Engineering and Mechanics
    • /
    • v.37 no.2
    • /
    • pp.149-162
    • /
    • 2011
  • The aim of this research is a comprehensive review and evaluation of beam theories resting on elastic foundations that used to model mode-I delamination in multidirectional laminated composite by DCB specimen. A compliance based approach is used to calculate critical strain energy release rate (SERR). Two well-known beam theories, i.e. Euler-Bernoulli (EB) and Timoshenko beams (TB), on Winkler and Pasternak elastic foundations (WEF and PEF) are considered. In each case, a closed-form solution is presented for compliance versus crack length, effective material properties and geometrical dimensions. Effective flexural modulus ($E_{fx}$) and out-of-plane extensional stiffness ($E_z$) are used in all models instead of transversely isotropic assumption in composite laminates. Eventually, the analytical solutions are compared with experimental results available in the literature for unidirectional ($[0^{\circ}]_6$) and antisymmetric angle-ply ($[{\pm}30^{\circ}]_5$, and $[{\pm}45^{\circ}]_5$) lay-ups. TB on WEF is a simple model that predicts more accurate results for compliance and SERR in unidirectional laminates in comparison to other models. TB on PEF, in accordance with Williams (1989) assumptions, is too stiff for unidirectional DCB specimens, whereas in angle-ply DCB specimens it gives more reliable results. That it shows the effects of transverse shear deformation and root rotation on SERR value in composite DCB specimens.

Robust market-based control method for nonlinear structure

  • Song, Jian-Zhu;Li, Hong-Nan;Li, Gang
    • Earthquakes and Structures
    • /
    • v.10 no.6
    • /
    • pp.1253-1272
    • /
    • 2016
  • For a nonlinear control system, there are many uncertainties, such as the structural model, controlled parameters and external loads. Although the significant progress has been achieved on the robust control of nonlinear systems through some researches on this issue, there are still some limitations, for instance, the complicated solving process, weak conservatism of system, involuted structures and high order of controllers. In this study, the computational structural mechanics and optimal control theory are adopted to address above problems. The induced norm is the eigenvalue problem in structural mechanics, i.e., the elastic stable Euler critical force or eigenfrequency of structural system. The segment mixed energy is introduced with a precise integration and an extended Wittrick-Williams (W-W) induced norm calculation method. This is then incorporated in the market-based control (MBC) theory and combined with the force analogy method (FAM) to solve the MBC robust strategy (R-MBC) of nonlinear systems. Finally, a single-degree-of-freedom (SDOF) system and a 9-stories steel frame structure are analyzed. The results are compared with those calculated by the $H{\infty}$-robust (R-$H{\infty}$) algorithm, and show the induced norm leads to the infinite control output as soon as it reaches the critical value. The R-MBC strategy has a better control effect than the R-$H{\infty}$ algorithm and has the advantage of strong strain capacity and short online computation time. Thus, it can be applied to large complex structures.

On the Improvement of the Accuracy of Higher Order Derivatives in the MLS(Moving Least Square) Difference Method via Mixed Formulation (MLS 차분법의 결정 변수에 따른 정확도 분석 및 혼합변분이론을 통한 미분근사 성능향상)

  • Kim, Hyun-Young;Kim, Jun-Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.5
    • /
    • pp.279-286
    • /
    • 2020
  • In this study, we investigate the accuracy of higher order derivatives in the moving least square (MLS) difference method. An interpolation function is constructed by employing a Taylor series expansion via MLS approximation. The function is then applied to the mixed variational theorem in which the displacement and stress resultants are treated as independent variables. The higher order derivatives are evaluated by solving simply supported beams and cantilevers. The results are compared with the analytical solutions in terms of the order of polynomials, support size of the weighting function, and number of nodes. The accuracy of the higher order derivatives improves with the employment of the mean value theorem, especially for very high-order derivatives (e.g., above fourth-order derivatives), which are important in a classical asymptotic analysis.