• Title/Summary/Keyword: Euler

Search Result 1,660, Processing Time 0.024 seconds

Performance Analysis of Secondary Gas Injection for a Conical Rocket Nozzle TVC(I) (2차 가스분사에 의한 원추형 로켓노즐 추력벡터제어 성능해석 (I))

  • 김형문;이상길;윤웅섭
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.1
    • /
    • pp.1-8
    • /
    • 1999
  • In the present paper an attempt has been made to simulate the secondary injection-primary flow interaction in the conical rocket nozzle and to derive the performance of secondary injection thrust vector control(SITVC) system. Complex three-dimensional flowfield induced by the secondary injection is numerically analyzed by solving unsteady three-dimensional Euler equation with Beam and Warming's implicit approximate factorization method. Emphasized in the present study is the effect of secondary injection such as secondary mass flow rates and the momentum of secondary/primary nozzle flow mass rates upon the gross system performance parameters such as thrust ratio, specific impulse ratio and deflection angle. The results obtained in terms of system performance parameters show that lower secondary mass flow rate is advantageous for to reduce secondary specific impulse loss. It is further found that the nozzle with secondary jet injected downstream and interacting with fast primary flow is preferable for efficient and stable SITVC over the wide range of use with the penalty of side specific impulse loss.

  • PDF

Application of Golden Ratio Jacket Code in MIMO Wireless Communications (MIMO 통신에서 황금(黃金) 비(比) 자켓코드의 응용)

  • Kim, Jeong-Su;Lee, Moon-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.4
    • /
    • pp.83-93
    • /
    • 2017
  • In everyday life, the ratio of credit card aspect ratio is 1: 1.56, and A4 printer paper is 1: 1.414, which is relatively balanced golden ratio. In this paper, we show the Fibonacci Golden ratio as a polynomial based on the golden ratio, which is the most balanced and ideal visible ratio, and show that the application of Euler and symmetric jacket polynomial is related to BPSK and QPSK constellation. As a proof method, we have derived Fibonacci Golden and Galois field element polynomials. Then mathematically, We have newly derived a golden jacket code that can be used to generate an appropriate code with orthogonal properties and can simply be used for inverse calculation. We also obtained a channel capacity according to the channel correlation change using a block jacket matrix in a MIMO mobile communication.

Implementation of Mutual Conversion System between Body Movement and Visual·Auditory Information (신체 움직임-시·청각 정보 상호변환 시스템의 구현)

  • Bae, Myung-Jin;Kim, Sung-Ill
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.362-368
    • /
    • 2018
  • This paper has implemented a mutual conversion system that mutually converts between body motion signals and both visual and auditory signals. The present study is based on intentional synesthesia that can be perceived by learning. The Euler's angle was used in body movements as the output of a wearable armband(Myo). As a muscle sense, roll, pitch and yaw signals were used in this study. As visual and auditory signals, MIDI(Musical Instrument Digital Interface) signals and HSI(Hue, Saturation, Intensity) color model were used respectively. The method of mutual conversion between body motion signals and both visual and auditory signals made it easy to infer by applying one-to-one correspondence. Simulation results showed that input motion signals were compared with output simulation ones using ROS(Root Operation System) and Gazebo which is a 3D simulation tool, to enable the mutual conversion between body motion information and both visual and auditory information.

Optimal Design of a Fine Actuator for Optical Pick-up (광픽업 미세구동부의 최적설계)

  • Lee, Moon-G;Gweon, Dae-Gab
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.5
    • /
    • pp.819-827
    • /
    • 1997
  • In this paper, a new modeling of a fine actuator for an optical pick-up has been proposed and multiobjective optimization of the actuator has been performed. The fine actuator is constituted of the bobbin which is supported by wire suspension, the coils which wind around the bobbin, and the magnets which cause the magnetic flux. If current flows in the coils, magnetic force is so produced as to be balanced with spring force of wire, so the bobbin is pisitioned. In this model the transfer function from input voltage to output displacementof bobbin has been obtained so that we can describe this integrated system with electromagnetic and mechanical parts. Wire suspension is regarded as a continuous Euler beam, damper as distributed viscous damping, and bobbin as a rigid body which can move up- and down- ward motion only. According to the model, the high frequency dynamic characteristics of the fine actuator can be known and the effect of damping can be investigated while the conventional second order model cannot. In multiobjective optimization, two objective functions have been chosen to maximize the fundamental frequency and the sensitivity with respect to the input voltage of the actuator so that Pareto's optimal solutions have been obtained using .epsilon.-constraint method. These objective functions will satisfy the trends which will enhance the access speed and reduce the tracking error in the optical pick-up technology of next generation. In the result of optimization, we obtain the designs of the optical pick-up fine actuator which has high speed, high sensitivity and low resonant peak. Furthermore, we offer the relation between two object functions so that the designer can make easy choice.

A Computational Study of the Focusing Phenomenon of Weak Shock Wave (약한 충격파의 포커싱 현상에 관한 수치해석적 연구)

  • Kweon Yong Hun;Kim Heuy Dong
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.169-172
    • /
    • 2002
  • When a plane shockwave reflects ken a concave wall, it is focused at a certain location, resulting in extremely high local pressure and temperature. This focusing is due to a nonlinear phenomenon of shock wave. The focusing phenomenon has been extensively applied to many diverse folds of engineering and medical treatment as well. In the current study, the focusing of shock wave over a reflector is numerically investigated using a CFD method. The Harten-Yee total variation diminishing (TVD) scheme is used to solve the unsteady, two-dimensional, compressible, Euler equations. The incident shock wave Mach number $M_{s}\;of\;1.1{\~}l.3$ is applied to the parabolic reflectors with several different depths. Detailed focusing characteristics of the shock wave are investigated in terms of peak pressure, gasdynamic and geometrical foci. The results obtained are compared with the previous experimental results. The results obtained show that the peak pressure of shock wave focusing and its location strongly depend on the magnitude of the incident shock wave and depth of parabolic reflector. It is also found that depending up on the depth of parabolic reflector, the weak shock wave focusing process can classified into three distinct patterns : the reflected shock waves do not intersect each other before and after focusing, the reflected shock waves do not intersect each other before focusing, but intersect after focusing, and the reflected shock waves intersect each other before and after focusing. The predicted Schlieren images represent the measured shock wave focusing with a good accuracy.

  • PDF

A Momentum-Exchange/Fictitious Domain-Lattice Boltzmann Method for Solving Particle Suspensions (부유 입자를 해석하기 위한 운동량 교환/가상영역-격자볼츠만 방법)

  • Jeon, Seok Yun;Yoon, Joon Yong;Kim, Chul Kyu;Shin, Myung Seob
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.6
    • /
    • pp.347-355
    • /
    • 2016
  • This study presents a Lattice Boltzmann Method (LBM) coupled with a momentum-exchange approach/fictitious domain (MEA/FD) method for the simulation of particle suspensions. The method combines the advantages of the LB and the FD methods by using two unrelated meshes, namely, a Eulerian mesh for the flow domain and a Lagrangian mesh for the solid domain. The rigid body conditions are enforced by the momentum-exchange scheme in which the desired value of velocity is imposed directly in the particle inner domain by introducing a pseudo body force to satisfy the constraint of rigid body motion, which is the key idea of a fictitious domain (FD) method. The LB-MEA/FD method has been validated by simulating two different cases, and the results have been compared with those through other methods. The numerical evidence illustrated the capability and robustness of the present method for simulating particle suspensions.

Investigation of dynamic response of "bridge girder-telpher-load" crane system due to telpher motion

  • Maximov, Jordan T.;Dunchev, Vladimir P.
    • Coupled systems mechanics
    • /
    • v.7 no.4
    • /
    • pp.485-507
    • /
    • 2018
  • The moving load causes the occurrence of vibrations in civil engineering structures such as bridges, railway lines, bridge cranes and others. A novel engineering method for separation of the variables in the differential equation of the elastic line of Bernoulli-Euler beam has been developed. The method can be utilized in engineering structures, leading to "a beam under moving load model" with generalized boundary conditions. This method has been implemented for analytical study of the dynamic response of the metal structure of a single girder bridge crane due to the telpher movement along the bridge girder. The modeled system includes: a crane bridge girder; a telpher, moving with a constant horizontal velocity; a load, elastically fixed to the telpher. The forced vibrations with their own frequencies and with a forced frequency, due to the telpher movement, have been analyzed. The loading resulting from the telpher uniform movement along the bridge girder is cyclical, which is a prerequisite for nucleation and propagation of fatigue cracks. The concept of "dynamic coefficient" has been introduced, which is defined as a ratio of the dynamic deflection of the bridge girder due to forced vibrations, to the static one. This ratio has been compared with the known from the literature empirical dynamic coefficient, which is due to the telpher track unevenness. The introduced dynamic coefficient shows larger values and has to be taken into account for engineering calculations of the bridge crane metal structure. In order to verify the degree of approximation, the obtained results have been compared with FEM outcomes. An additional comparison has been made with the exact solution, proposed by Timoshenko, for the case of simply supported beam subjected to a moving force. The comparisons show a good agreement.

Design load-carrying capacity estimates and an improved wooden shore setup

  • Huang, Y.L.;Lin, Y.C.;Lee, C.F.;Chen, H.J.;Yen, T.
    • Structural Engineering and Mechanics
    • /
    • v.17 no.2
    • /
    • pp.167-186
    • /
    • 2004
  • The design load-carrying capacities of wooden shores depend on factors, such as the wood species and properties, and construction methods. This paper focuses on the construction methods, including an upright single shore, group of upright shores, group of inclined shores, butt connections and lap connections. This paper reports experiments to obtain critical loads and then developed an empirical equation based on Euler' formula for the critical loads and design load-carrying capacities. The test results show that the critical loads for an upright single wooden shore are greater than the average values for a group of upright shores, and the latter are greater than the average values for a group of inclined shores. Test results also show that the critical loads become smaller when butt or lap connections are used, butt connections possessing greater critical loads than lap connections. Groups of inclined shores are very popular at work sites because they have some practical advantages even though they actually possess inferior critical loads. This paper presents an improved setup for constructing groups of inclined shores. With this method, the inclined shores have larger critical loads than upright shores. The design load-carrying capacities were obtained by multiplying the average critical loads by a resistance factor (or strength reduction factor, ${\phi}$) that were all smaller than 1. This article preliminarily suggests ${\phi}$ factors based on the test results for the reference of engineers or specification committees.

Contact interface fiber section element: shallow foundation modeling

  • Limkatanyu, Suchart;Kwon, Minho;Prachasaree, Woraphot;Chaiviriyawong, Passagorn
    • Geomechanics and Engineering
    • /
    • v.4 no.3
    • /
    • pp.173-190
    • /
    • 2012
  • With recent growing interests in the Performance-Based Seismic Design and Assessment Methodology, more realistic modeling of a structural system is deemed essential in analyzing, designing, and evaluating both newly constructed and existing buildings under seismic events. Consequently, a shallow foundation element becomes an essential constituent in the implementation of this seismic design and assessment methodology. In this paper, a contact interface fiber section element is presented for use in modeling soil-shallow foundation systems. The assumption of a rigid footing on a Winkler-based soil rests simply on the Euler-Bernoulli's hypothesis on sectional kinematics. Fiber section discretization is employed to represent the contact interface sectional response. The hyperbolic function provides an adequate means of representing the stress-deformation behavior of each soil fiber. The element is simple but efficient in representing salient features of the soil-shallow foundation system (sliding, settling, and rocking). Two experimental results from centrifuge-scale and full-scale cyclic loading tests on shallow foundations are used to illustrate the model characteristics and verify the accuracy of the model. Based on this comprehensive model validation, it is observed that the model performs quite satisfactorily. It resembles reasonably well the experimental results in terms of moment, shear, settlement, and rotation demands. The hysteretic behavior of moment-rotation responses and the rotation-settlement feature are also captured well by the model.

Free vibration analysis of a piezoelectric nanobeam using nonlocal elasticity theory

  • Kaghazian, Abbas;Hajnayeb, Ali;Foruzande, Hamidreza
    • Structural Engineering and Mechanics
    • /
    • v.61 no.5
    • /
    • pp.617-624
    • /
    • 2017
  • Piezoelectric nanobeams are used in several nano electromechanical systems. The first step in designing these systems is conducting a vibration analysis. In this research, the free vibration of a piezoelectric nanobeam is analyzed by using the nonlocal elasticity theory. The nanobeam is modeled based on Euler-Bernoulli beam theory. Hamilton's principle is used to derive the equations of motion and also the boundary conditions of the system. The obtained equations of motion are solved by using both Galerkin and the Differential Quadrature (DQ) methods. The clamped-clamped and cantilever boundary conditions are analyzed and the effects of the applied voltage and nonlocal parameter on the natural frequencies and mode shapes are studied. The results show the success of Galerkin method in determining the natural frequencies. The results also show the influence of the nonlocal parameter on the natural frequencies. Increasing a positive voltage decreases the natural frequencies, while increasing a negative voltage increases them. It is also concluded that for the clamped parts of the beam and also other parts that encounter higher values of stress during free vibrations of the beam, anti-nodes in voltage mode shapes are observed. On the contrary, in the parts of the beam that the values of the induced stress are low, the values of the amplitude of the voltage mode shape are not significant. The obtained results and especially the mode shapes can be used in future studies on the forced vibrations of piezoelectric nanobeams based on Galerkin method.