• Title/Summary/Keyword: Euclid distance

Search Result 13, Processing Time 0.015 seconds

Short Term Load Forecasting Algorithm for Lunar New Year's Day

  • Song, Kyung-Bin;Park, Jeong-Do;Park, Rae-Jun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.591-598
    • /
    • 2018
  • Short term load forecasts complexly affected by socioeconomic factors and weather variables have non-linear characteristics. Thus far, researchers have improved load forecast technologies through diverse techniques such as artificial neural networks, fuzzy theories, and statistical methods in order to enhance the accuracy of load forecasts. Short term load forecast errors for special days are relatively much higher than that of weekdays. The errors are mainly caused by the irregularity of social activities and insufficient similar past data required for constructing load forecast models. In this study, the load characteristics of Lunar New Year's Day holidays well known for the highest error occurrence holiday period are analyzed to propose a load forecast technique for Lunar New Year's Day holidays. To solve the insufficient input data problem, the similarity of the load patterns of past Lunar New Year's Day holidays having similar patterns was judged by Euclid distance. Lunar New Year's Day holidays periods for 2011-2012 were forecasted by the proposed method which shows that the proposed algorithm yields better results than the comprehensive analysis method or the knowledge-based method.

Prerequisite Research for the Development of an End-to-End System for Automatic Tooth Segmentation: A Deep Learning-Based Reference Point Setting Algorithm (자동 치아 분할용 종단 간 시스템 개발을 위한 선결 연구: 딥러닝 기반 기준점 설정 알고리즘)

  • Kyungdeok Seo;Sena Lee;Yongkyu Jin;Sejung Yang
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.346-353
    • /
    • 2023
  • In this paper, we propose an innovative approach that leverages deep learning to find optimal reference points for achieving precise tooth segmentation in three-dimensional tooth point cloud data. A dataset consisting of 350 aligned maxillary and mandibular cloud data was used as input, and both end coordinates of individual teeth were used as correct answers. A two-dimensional image was created by projecting the rendered point cloud data along the Z-axis, where an image of individual teeth was created using an object detection algorithm. The proposed algorithm is designed by adding various modules to the Unet model that allow effective learning of a narrow range, and detects both end points of the tooth using the generated tooth image. In the evaluation using DSC, Euclid distance, and MAE as indicators, we achieved superior performance compared to other Unet-based models. In future research, we will develop an algorithm to find the reference point of the point cloud by back-projecting the reference point detected in the image in three dimensions, and based on this, we will develop an algorithm to divide the teeth individually in the point cloud through image processing techniques.

Photomosaic Algorithm with Adaptive Tilting and Block Matching (적응적 타일링 및 블록 매칭을 통한 포토 모자이크 알고리즘)

  • Seo, Sung-Jin;Kim, Ki-Wong;Kim, Sun-Myeng;Lee, Hae-Yeoun
    • The KIPS Transactions:PartB
    • /
    • v.19B no.1
    • /
    • pp.1-8
    • /
    • 2012
  • Mosaic is to make a big image by gathering lots of small materials having various colors. With advance of digital imaging techniques, photomosaic techniques using photos are widely used. In this paper, we presents an automatic photomosaic algorithm based on adaptive tiling and block matching. The proposed algorithm is composed of two processes: photo database generation and photomosaic generation. Photo database is a set of photos (or tiles) used for mosaic, where a tile is divided into $4{\times}4$ regions and the average RGB value of each region is the feature of the tile. Photomosaic generation is composed of 4 steps: feature extraction, adaptive tiling, block matching, and intensity adjustment. In feature extraction, the feature of each block is calculated after the image is splitted into the preset size of blocks. In adaptive tiling, the blocks having similar similarities are merged. Then, the blocks are compared with tiles in photo database by comparing euclidean distance as a similarity measure in block matching. Finally, in intensity adjustment, the intensity of the matched tile is replaced as that of the block to increase the similarity between the tile and the block. Also, a tile redundancy minimization scheme of adjacent blocks is applied to enhance the quality of mosaic photos. In comparison with Andrea mosaic software, the proposed algorithm outperforms in quantitative and qualitative analysis.