• Title/Summary/Keyword: EuF_3)$

Search Result 152, Processing Time 0.024 seconds

Photoluminescence Properties of CaNb2O6:RE3+ (RE = Dy, Eu, Dy/Eu) Phosphors (CaNb2O6:RE3+ (RE = Dy, Eu, Dy/Eu) 형광체의 발광 특성)

  • Cho, Hyungchel;Cho, Shinho
    • Korean Journal of Materials Research
    • /
    • v.27 no.6
    • /
    • pp.339-344
    • /
    • 2017
  • A series of $CaNb_2O_6:Dy^{3+}$, $CaNb_2O_6$:$Eu^{3+}$ and $CaNb_2O_6:Dy^{3+}$, $Eu^{3+}$ phosphors were prepared by solid-state reaction process. The effects of activator ions on the structural, morphological and optical properties of the phosphor particles were investigated. XRD patterns showed that all the phosphors had an orthorhombic system with a main (131) diffraction peak. For the $Dy^{3+}$-doped $CaNb_2O_6$ phosphor powders, the excitation spectra consisted of one broad band centered at 267 nm in the range of 210-310 nm and three weak peaks; the main emission band showed an intense yellow band at 575 nm that corresponded to the $^4F_{9/2}{\rightarrow}^6H_{13/2}$ transition of $Dy^{3+}$ ions. For the $Eu^{3+}$-doped $CaNb_2O_6$ phosphor, the emission spectra under ultraviolet excitation at 263 nm exhibited one strong reddish-orange band centered at 612 nm and four weak bands at 536, 593, 650, and 705 nm. For the $Dy^{3+}$ and $Eu^{3+}$-codoped $CaNb_2O_6$ phosphor powders, blue and yellow emission bands due to the $^4F_{9/2}{\rightarrow}^6H_{15/2}$ and $^4F_{9/2}{\rightarrow}^6H_{13/2}$ transitions of $Dy^{3+}$ ions and a main reddish-orange emission line at 612 nm resulting from the $^5D_0{\rightarrow}^7F_2$ transition of $Eu^{3+}$ ions were observed. As the concentration of $Eu^{3+}$ ions increased from 1 mol% to 10 mol%, the intensities of the emissions due to $Dy^{3+}$ ions rapidly decreased, while those of the emission bands originating from the $Eu^{3+}$ ions gradually increased, reached maxima at 10 mol%, and then slightly decreased at 15 mol% of $Eu^{3+}$. These results indicate that white light emission can be achieved by modulating the concentrations of the $Eu^{3+}$ ions incorporated into the $Dy^{3+}$-doped $CaNb_2O_6$ host lattice.

A Fundamental Study of Structure-Property Relationships in $Eu^{3+}$ Luminescence ($Eu^{3+}$ 이온의 발광성에 대한 구조와 성질의 기본적인 연구)

  • Chang, Ki-Seog
    • Korean Journal of Crystallography
    • /
    • v.13 no.1
    • /
    • pp.25-30
    • /
    • 2002
  • The M/sub 1-x/Na/sub 2x/Al₂(BO₃)₂O (M = Ca and Sr) solid solution systems have been shown interstitial solid solutions and continuous substitutional solid solutions. The symmetry around the Eu site of yEu/sup 3+/ : M/sub 1-x/Na/sub 2x/Al/sub 2-y/Mg/sub /(BO₃)₂O (M = Ca and Sr) changes the intensities and the chromaticities of transitions. The Eu/sup 3+/ion can be very bright and efficient and have the desired emission wave-length depending on the site symmetry of the Eu/sup 3+/ion site. As the amount of Na in the Eu/sup 3+/ion doped Ca/sub 1-x/Na/sub 2x/Al₂(BO₃)₂O system increases, the Eu site symmetry is going to be a noncentrosymmetric site. With increasing x, the decreased intensity in the /sup 5/D/sub 0/→/sup 7/F₁(590 nm) transition relates to the low symmetry of the Eus/up 3+/-doped Ca/sub 1-x/Na/sub 2x/Al₂(BO₃)₂O system, because of the Ca-centered octahedron in the CaAl₂(BO₃)₂O compound. The SrAl₂(BO₃)₂O compound also provides an improved chromaticity due to the lower site symmetry of Eu/sup 3+/ion.

Effects of the Preparation Process on the Synthesis and the Luminescence of Ba2SiO4:Eu2+ Phosphor Powders (합성공정이 Ba2SiO4:Eu2+ 형광체 분말의 합성과 발광특성에 미치는 영향)

  • Park, Jung Hye;Kim, Young Jin
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.3
    • /
    • pp.184-189
    • /
    • 2013
  • $Ba_2SiO_4:Eu^{2+}$ ($B_2S:Eu^{2+}$) powders were prepared by firing the dry gel obtained by the sol-gel and the hybrid process (sol-gel and combustion), respectively, and their structure and luminescence were investigated. Tetraethyl orthosilicate (TEOS) was used as a Si source. The phase transition was observed with the TEOS content. With 1.2M TEOS, the powders prepared by the sol-gel process without prior calcination were composed of the $B_2S:Eu^{2+}$ single phase, whereas those by the sol-gel and the hybrid process with prior calcination consisted of the dominant $B_2S:Eu^{2+}$ and minor $BaSiO_3:Eu^{2+}$ ($BS:Eu^{2+}$) phases and their emission intensities were approximately two times higher than those without prior calcination. The hybrid process could reduce the process time innovatively compared to the sol-gel process, even though the former was a little inferior to the latter in the emission intensity of $B_2S:Eu^{2+}$. With 1.1M TEOS, the $B_2S:Eu^{2+}$ single phase was obtained by the hybrid process, and its green emission was observed at 505 nm originated from the $4f^65d^1{\rightarrow}4f^7$ transition of $Eu^{2+}$ ions.

Synthesis and Photoluminescence Properties of Dy3+- and Eu3+-codoped CaMoO4 Phosphors (Dy3+와 Eu3+ 이온이 동시 도핑된 CaMoO4 형광체의 합성과 발광 특성)

  • Kim, Junhan;Cho, Shinho
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.3
    • /
    • pp.82-86
    • /
    • 2015
  • $Dy^{3+}$- and $Eu^{3+}$-codoped $CaMoO_4$ Phosphors were synthesized by using the solid-state reaction method. The crystal structure, morphology, and optical properties of the resulting phosphor particles were investigated by using the X-ray diffraction, field-emission scanning electron microscopy, and photoluminescence spectroscopy. XRD patterns exhibited that all the synthesized phosphors showed a tetragonal system with a main (112) diffraction peak, irrespective of the content of $Eu^{3+}$ ions. As the content of $Eu^{3+}$ ions increased, the grains showed a tendency to agglomerate. The excitation spectra of the synthesized powders were composed of one strong broad band centered at 305 nm in the range of 220 - 350 nm and several weak peaks in the range of 350 - 500 nm resulting from the 4f transitions of activator ions. Upon ultraviolet excitation at 305 nm, the yellow emission line due to the $^4F_{9/2}{\rightarrow}^6H_{13/2}$ transition of $Dy^{3+}$ ions and the main red emission spectrum resulting from the $^5D_0{\rightarrow}^7F_2$ transition of $Eu^{3+}$ ions were observed. With the increase of the content of $Eu^{3+}$, the intensity of the yellow emission band gradually decreased while that of the red emission increased. These results indicated that the emission intensities of yellow and red emissions could be modulated by changing the content of the $Dy^{3+}$ and $Eu^{3+}$ ions incorporated into the host crystal.

Optical Spectroscopy of$Eu^{3+}$in Borosilicate Glasses (붕규산유리 매질 내에서의$Eu^{3+}$이온의 형광특성)

  • Kim, Jong Goo;Lee, Jong Gyu;Kim, Jung Suk;Kim, Seung Soo;Chun, Kwan Sik
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.5
    • /
    • pp.251-255
    • /
    • 1997
  • Fluorescence spectra and life time of $Eu^{3+}$ ion in borosilicate glass medium are measured. Electronic transitions of $Eu^{3+}$ ion in borosilicate glass medium are found to come from $5D0{\rightarrow}7FJ$(J=0, 1, 2, 3, 4) transitions of SL coupling system in $f^b$ electrons configuration. From the number of Stark sublevels in spetra, crystal field for $Eu^{3+}$ ion is also found to have the symmetric character of low symmetry order, $n{\leq}2$. The fraction and the number of components of life times were varied depending on the composition of $Eu^{3+}$ in borosilicate glasses, from which the binding condition between the $Eu^{3+}$ ion and anionic oxygen of borosilicate glass can be deduced.

  • PDF

Differences in Structural Characteristics and Eu(III) Complexation for Molecular Size Fractionated Humic Acid (분자량별 분류에 따른 휴믹산의 구조적 특성 및 Eu(III)과의 착물 반응 특성 비교에 대한 연구)

  • Shin, Hyun-Sang;Rhee, Dong-Seok;Kang, Kihoon
    • Analytical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.159-166
    • /
    • 2001
  • A humic acid(HA, Aldrich Co) sample was subjected to ultrafiltration for molecular size fractionation and three fractions of different nominal size($F_1$: 1,000-10,000 daltons; $F_2$: 10,000-50,000 daltons; $F_3$: 100,000-300,000 daltons) were obtained. The structural characteristics of the size-fractionated HA were analyzed using their IR and solid state C-13 NMR spectral data, and the carboxylate group contents of the humic acids were determined using their pH titration data. The $^7F_0-{^5}D_0$ excitation spectra of Eu(III) complexes of the size-fractionated mgHA in aqueous solution were acquired($[Eu(III)]=1.0{\times}10^{-4}mol\;L^{-1}$, $(HA)=470-970mg\;L^{-1}$) at pH 5.0 using a pulsed tunable laser system, in which metal binding properties of the size-fractionated HA were elucidated and compared on another. Characterization of the IR and C-13 NMR spectral data indicated that the fraction($F_3$) with molecules of larger size were primarily aliphatic, while the fractions($F_1$, $F_2$) with smaller molecules of less than 50,000 daltons were predominantly aromatic. Titration data were consistent with an increase in the number of carboxylate groups per unit mass as molecular size became smaller. The $^7F_0-{^5}D_0$ excitation spectral data of Eu(III)-humate complexes showed that the peak maxima on these spectra were shifted toward lower energies with increasing molecular size of HA, indicating the higher degree of bindings of the Eu in the molecules of larger size. We also discussed the relationship of the lower energy shifts of the maximum peaks with increasing the molecular size of HA with the structural differences of the size-fractionated HA.

  • PDF

Site spectroscopy probing of Eu3+ incorporated into novel LiYxSryZrO3+α host matrix

  • Ahemen, I.;Dejene, F.B.
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1359-1367
    • /
    • 2018
  • In this work, we investigated the spectroscopic properties of $LiY_xSr_yZrO_{3+{\alpha}:Eu^{3+}$, a red emitting nanophosphor based on $SrZrO_3$ perovskite. The synthesis process was an auto-combustion process. X-ray diffractograms show the orthorhombic structure of $SrZrO_3$. Photoluminescence (PL) excitation spectra display a split charge transfer band revealing the presence of two possible sites for the $Eu^{3+}$ ions. The emission spectra at 231 nm excitation illustrate the dominance of the $^5D_0-^7F_1$ transition, which is an indication that the smaller sized $Eu^{3+}$ ions are mostly situated at the more ordered (symmetric) $Sr^{2+}$ sites. The emission spectra at 292 nm & 397 nm excitations show the dominance of $^5D_0-^7F_2$ transition which suggests some of the $Eu^{3+}$ ions are also situated at the distorted $Zr^{4+}$ sites. Both the intensity parameters, asymmetry ratio and the decay lifetimes of the nanophosphors show dependence on $Y^{3+}$ concentration, signifying a modification in the host structure. Maximum quantum efficiency value of ${\approx}46%$ was obtained for the nanophosphors which indicate the need for improvement for practical applications. CIE coordinates show the suitability of this phosphor for both red emission in LED and as a complementary colour for white LED applications.

Synthesis and After-Glow Characteristics of Eu Activated Sr-Al-O Long Phosphorescent Phosphor (Eu 부활형 Sr-Al-O 계 장잔광 형광체의 합성과 잔광특성)

  • Lee, Young-Ki;Kim, Jung-Yeul;Kim, Byung-Kyu;Yu, Yeon-Tae
    • Korean Journal of Materials Research
    • /
    • v.8 no.8
    • /
    • pp.737-743
    • /
    • 1998
  • The synthesis of $SrAI_2O_4:Eu^{2+}$ phosphor and its properties of both photoluminescence and long-phosphorescent were investigated as a function of sintering condition. Single phase of $SrAl_2O_4$ was obtained by sintering the mixtures of $SrCO_3$, $Eu_2O_3$, $AI_2O_34 and 3wt% $B_2O_3$ powders over 100$0^{\circ}C$ in Ar/H2 atmosphere. The optimum sintering condition for the long-phosphorescent phosphor of $SrAI_2O_4:Eu^{2+}$ was found at 130$0^{\circ}C$ for 3hours. The PL emission spectrum of $SrAI_2O_4:Eu^{2+}$ shows a maximum peak intensity at 520nm(2.384eV) with a broad emission extending from 450 to 650nm which resulted from the $4f^65d^1$$\rightarrow$$4f^7$ transition of $Eu^{+2}$ under 360nm exitation. Monitored at 520nm. the excita¬tion spectrum of $SrAI_2O_4:Eu^{2+}$ exhibits a maximum peak intensity at 360nm (3.44eV) with a broad absorption band extending from 250 to 480nm.

  • PDF

Synthesis and photoluminescence of Ca3Si3O8F2: Ce4+, Eu3+, Tb3+ phosphor

  • Suresh, K.;PoornachandraRao, Nannapaneni V.;Murthy, K.V.R.
    • Advances in materials Research
    • /
    • v.3 no.4
    • /
    • pp.227-232
    • /
    • 2014
  • $Ce^{4+}$, $Eu^{3+}$, $Tb^{3+}$ co-doped $Ca_3Si_3O_8F_2$ phosphor was synthesized via solid state reaction method using $CaF_2$, $CaCO_3$ and $SiO_2$ as raw materials for the host and $Eu_2O_3$, $CeO_2$, and $Tb_4O_7$ as activators. The luminescent properties of the phosphor was analysed by spectrofluorophotometer at room temperature. The effect of excitation wavelengths on the luminescent properties of the phosphor i.e. under near-ultraviolet (nUV) and visible excitations was investigated. The emission peaks of $Ce^{4+}$, $Eu^{3+}$, $Tb^{3+}$ co-doped $Ca_3Si_3O_8F_2$ phosphor lays at 480(blue band), 550(green band) and 611nm (red band) under 380nm excitation wavelength, attributed to the $Ce^{4+}$ ion, $Tb^{3+}$ ion and $Eu^{3+}$ ions respectively. The results reveal that the phosphor emits white light upon nUV (380nm) / visible (465nm) illumination, and a red light upon 395nm / 535nm illumination. RE ions doped $Ca_3Si_3O_8F_2$ is a promising white light phosphor for LEDs. The emission colours can be seen using Commission international de l'eclairage (CIE) co-ordinates. A single host phosphor emitting different colours under different excitations indicates that it is a potential phosphor having applications in many fields.

Luminescence of $Eu^{3+}$ and $Sm^{3+}$ Doped Potassium Tungstate Phosphor

  • Lee, Gwan-Hyoung;Kim, Tae-Hyung;Kang, Shin-Hoo
    • Journal of Information Display
    • /
    • v.6 no.2
    • /
    • pp.25-29
    • /
    • 2005
  • The luminescent properties of $Eu^{3+}$ and $Sm^{3+}$ doped potassium tungstate phosphor are investigated. The $K_{4-3x}(WO_4)_2:Eu^{3+}\;_x,Sm^{3+}\;_y$ phosphor is produced by firing the mixed precursors, followed by re-firing with a flux. The re-firing process results in the defect-free surface and uniform growth of the particles. The strong absorption in the region of ultra violet light is observed due to the 4f-4f electron transitions of the $Eu^{3+}$ and $Sm^{3+}$ ions. The doping concentration of europium into potassium tungstate is relatively high, compared to other host materials. It is revealed that the crystal structure is a monoclinic with space group, C2/c. This crystal structure facilitated the $Eu^{3+}$ ions to be located with the Eu-Eu distance larger than 5 ${\AA}$ so that concentration quenching does not occur even at high doping concentration. The excitation spectrum could be adjusted by the introduction of the samarium. A small amount of the $Sm^{3+}$ ions that acts as a sensitizer increases the energy absorption peak around 405 nm.