• Title/Summary/Keyword: Ethylene-Air

Search Result 229, Processing Time 0.021 seconds

Injury Responses of Landscape Woody Plants to Air Pollutants - Visible Injury and Ethylene Production - (조경수목(造景樹木)의 대기오염물질(大氣汚染物質)에 대한 피해반응(被害反應)(II) - 엽피해(葉被害)와 Ethylene 발생량(發生量)을 중심으로 -)

  • Kim, Myung Hee;Lee, Soo Wook
    • Journal of Korean Society of Forest Science
    • /
    • v.82 no.4
    • /
    • pp.328-336
    • /
    • 1993
  • This study was conducted to investigate sensitivity of tree seedlings to $SO_2$. Visible injury symptoms and changes of ethylene production were investigated in tree seedlings with the fumigation of $SO_2$ in gas chamber 4 hours a day for six days. The symptoms of visible injury did not appear below 0.5ppm level of $SO_2$ exposure but a change of visible injury with the passage of time appeared at 1.5 and 2.5ppm in all seedlings. With the higher the concentration and/or the longer exposure of $SO_2$ the visible injury symptoms on leaves increased in all seedlings. The sensitivity of seedlings to $SO_2$ was the highest in Liriodendron tulipifera followed by Pinus strobus, Ginkgo biloba, Pinus densiflora and Pinus koraiensis. The amount of ethylene production was more at 1.5 and 2.5ppm of $SO_2$ exposure than at 0.5ppm and the peak time of it came faster at higher levels. The amount of ethylene production was significantly different among tree seedlings. It showed a higher at production of ethylene in Liriodendron tulipifera compared to Ginkgo biloba and the ethylene production of Pinus trees to $SO_2$ were the highest in Pinus strobus followed by Pinus densiflora and Pinus koraiensis. In needle of Pinus strobus the ethylene production increased with the increasing rate of visible injury until the injury rate of 40-50% and than decreased with the increasing rate of visible injury since the rate of 50%.

  • PDF

ENVIROMENTAL CONDITION DURING AIR SHIPMENT OF HORTICULTURAL PRODUCTS FROM OKINAWA TO TOKYO

  • Akinaga, Takayoshi;Kohda, Yoshihiro
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.413-422
    • /
    • 1993
  • Air shipment affords the quickest possible delivery of horticultural products. The price of air shipped horticultural products are relatively high as most of these products are perishable. Usually the temperature in the cargo compartment is not controlled during flight. Thus, special attention should be paid to procooling prior to shipment. The environmental condition during transportation of horticultural products is an essential parameter for maintaining the quality of perishable products. Commonly horticultural products were loaded by ULD(Unit Load Devices) as a container or pallet in the aircraft (except for small aircraft) . Therefore, inside temperature of the container and cargo compartment came into question. Scarce literature on the relationship between environmental condition and quality changes of horticultural products during air shipment can be found. By the stand point of keeping fresh quality, investigations on the actual condition of air shipments were carried out to improve the technique during the distribution process of fresh horticultural products. Temperature, humidity, atmospheric pressure, carbon dioxide, ethylene, impacts, and changes in quality during the air shipment of snapbeans, okras and chrysanthemums were measured. Temperature was measured by recording thermometers, relative humidity by recording hygrometers, atmospheric pressure by a strain -guage type pressure sensor, carbon dioxide by testing tubes, ethylene by sampling bags and a gaschromatograph, impacts and vibrations by impact recorders and a 3D accelerometer. Relationships between environmental conditions and quality changes during air shipments were clarified. It was expected from investigations into actual shipments that the ventilation and insulation properties of air freight containers were related to the quality of agricultural products. Aircraft can no directly load and unload trucks into them. The transshipment is inclined to cause shocks and vibrations, and to invite damages within a short time.

  • PDF

A study on ice-slurry production by water spray (수분무에 의한 아이스 슬러리 생성에 관한 연구)

  • Kim, B.S.;Lee, Y.P.;Yoon, S.Y.;Lee, J.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.2
    • /
    • pp.134-143
    • /
    • 1997
  • A theoretical and experimental study has been performed to investigate the characteristics of ice-slurry product. By diffusion-controlled model, the possibility of ice slurry has been theoretically anticipated. The water vapor evaporated from the surface of droplets is extracted continuously from the chamber by a vacuum pump. The droplet diameter was measured by silion immersed method. The ice slurry has been obtained by spraying droplets of ethylene-glycol aqueous solution in the chamber where pressure is maintained under the triple point of water. The droplet of which the diameter is $300{\mu}m$, and the initial temperature is $20^{\circ}C$, was changed into ice particle within the chamber of which the height is 1.33m.

  • PDF

COMBUSTION KINETICS OF POLYETHYLENE TEREPHTHALATE

  • Oh, Sea-Cheon;Lee, Dong-Gyu;Kwak, Hyun;Bae, Seong-Youl
    • Environmental Engineering Research
    • /
    • v.11 no.5
    • /
    • pp.250-256
    • /
    • 2006
  • The combustion kinetics of poly(ethylene terephthalate) (PET) was studied by the dynamic model which accounts for the thermal decomposition of polymer at any time. The kinetic analysis was performed by a conventional nonisothermal thermogravimetric (TG) technique at several heating rates between 10 and 40 K/min in air atmosphere. The thermal decomposition of PET in air atmosphere was found to be a complex process composed of at least two stages for which kinetic values can be calculated. The combustion kinetic analysis of PET gave apparent activation energy for the first stage of $257.3{\sim}269.9\;kJ/mol$, with a value of $140.5{\sim}213.8\;kJ/mol$ for the second stage. To verify the effectiveness of the kinetic analysis method used in this work, the kinetic analysis results were compared with those of various analytical methods. The kinetic parameters were also compared with values of the pyrolysis of PET in nitrogen atmosphere.

Numerical Analysis for the Detailed Structure and the Soot Formation Mechanism in Counterflow Ethylene-Air Nonpremixed Flame (대향류 에틸렌/공기 비예혼합 화염의 구조 및 Soot 생성 메커니즘 해석)

  • 임효준;김후중;김용모
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.5
    • /
    • pp.40-54
    • /
    • 1999
  • The flame structure and soot formation in the counterflow Ethylene-Air nonpremixed flame are numerically analyzed. The present soot reaction mechanism involves nucleation, surface growth, particle coagulation, and oxidation steps. The gas phase chemistry and the soot nucleation, surface growth reactions are coupled by assuming that the nucleation and soot mass growth has the certain relationship with the concentration of benzene and acetylene. In terms of the centerline velocity and the soot volume fraction, the predicted results are compared with the experimental data. The detailed discussion has been made for the sensitivity of model constants and the deficiencies of the present model. Numerical results indicated that the acetylene addition to the soot surface plays the dominant role in the soot mass growth for the counterflow nonpremixed flame.

  • PDF

A Study on Ice Slurry Production by Water Spray

  • Kim, Byeong-Sun;Lee, Yoon-Pyo;Yoon, Seong-Young;Lee, Jin-Ho
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.6
    • /
    • pp.45-55
    • /
    • 1998
  • A theoretical and experimental study is performed to investigate the characteristics of ice slurry product. By diffusion-controlled evaporation model the possibility of ice slurry is theoretically anticipated. The water vapor evaporated from the surface of droplets is extracted continuously from the chamber by a vacuum pump. The droplet diameter is measured by silicon immersion method. The ice slurry is obtained by spraying droplets of ethylene glycol aqueous solution in the chamber where pressure is maintained under the triple point of water. The droplet with the diameter of 300 $\mu\textrm{m}$and the initial temperature of 2$0^{\circ}C$ was changed into ice particle within the chamber of 1.33m in height.

  • PDF

Supersonic Combustion Studies for SCRamjet Engines

  • Driscoll, James F.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.1-14
    • /
    • 2004
  • Experiments were performed in order to examine the stability of hydrocarbon-fueled flames in cavity flameholders in supersonic airflows. Methane and ethylene were burned in two different cavity configurations having aft walls ramped at 22.5 and 90$^{\circ}$. Air stagnation temperatures were 590 K at Mach 2 and 640 K at Mach 3. Lean blowout limits showed dependence on the air mass flowrates. Visual observations, planar laser induced fluorescence (PLIF) of nitric oxide (NO), and Schlieren imaging were used to investigate these phenomena. Large differences were noted between cavity floor and cavity ramp injection schemes. Cavity ramp injection provided better performance in most cases. Ethylene pilots have a wider range of stable operation than methane. Fuel flowrates at ignition showed similar trends as lean blowout limits, but higher flowrates were required.

  • PDF

Effect of Nitrogen level under low Temperature Condition on Growth Characters, Nitrogen Concentration and Ethylene Evolution of Rice Varieties (저온하에서 질소시비량이 수도품종의 생육형질, 질소함량 및 ethylene 생성량에 미치는 영향)

  • Lee, Jong-Hoon;Lee, Moon-Hee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.32 no.2
    • /
    • pp.215-223
    • /
    • 1987
  • This experiment was carried out to determine the effect of nitrogen application on the cold tolerance of rice plant, with treatment of three levels of nitrogen and three times of application under the low temperature at tillering and panicle initiation stages. The higher cold tolerance variety was increased in plant height and number of tillers on high nitrogen level during the low temperature treatment. Nitrogen content of leaf blade was increased, but carbohydrate content was decreased during the low temperature treatment at tillering stage. Ethylene evolution from leaf was remark-ably increased just after low temperature treatment. Highly significant negative correlation was observed bet-ween the nitrogen content of leaf blade and percentage of filled grain under low temperature condition at reproductive growth stage.

  • PDF

Molecular Area and Interfacial Tension Behavior of Span 20 and Tween series surfactants at water/air interface (Span 20과 Tween계 계면활성제의 물/공기 계면에서의 분자면적과 계면장력 거동)

  • 김천희
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.24 no.7
    • /
    • pp.1065-1072
    • /
    • 2000
  • The molecular areas and the interfacial tension behavior of ten nonionic surfactants, i.e., Span 20 and Tween 20, 40, 60. 80, 21, 61, 81, 65, & 85 are tested to assay their effects on the wetting and liquid retention properties of hydrophilic and hydrophobic fibrous materials. The molecular areas at water/air interface are derived from Gibbs’adsorption equations. The following conclusions are drawn from the results: 1) Span 20 is efficient in lowering the interfacial tension and effective in adsorption at the water/air interface, resulting in the low interfacial tension at critical micelle concentration (${\gamma}$$_{CMC}$) and a small molecular area($\omega$), 2) when the hydrophiles of the surfactants are constant, $\omega$’s increase as hydrophobe carbon numbers of the surfactants increase, 3) when the hydrophobes are constant, ${\gamma}$$_{CMC}$’s and $\omega$’s increase as the hydrophile ethylene oxide units increase, indicating effectiveness and efficiency is parallel in this case, 4) the ethylene oxide unit length as a hydrophile has greater influence on u than the hydrophobe chain length.han the hydrophobe chain length.gth.

  • PDF