• Title/Summary/Keyword: Ethylene inhibitor

Search Result 60, Processing Time 0.023 seconds

Inhibitors Targeting ABA Biosynthesis and Catabolism Can Be Used to Accurately Discriminate between Haploid and Diploid Maize Kernels during Germination

  • Kwak, Jun Soo;Kim, Sung-Il;Song, Jong Tae;Ryu, Si Wan;Seo, Hak Soo
    • Plant Breeding and Biotechnology
    • /
    • v.5 no.3
    • /
    • pp.204-212
    • /
    • 2017
  • There is a growing preference for using doubled haploids (DHs) in maize breeding programs because they reduce the time required to generate and evaluate new lines to 2 years or less. However, there is an urgent need for efficient techniques that accurately discriminate between haploid and diploid maize kernels. Here, we investigate the effects of several hormones and chemicals on the germination of haploid and diploid maize kernels, including auxin, cytokinin, ethylene, abscisic acid (ABA) biosynthesis inhibitor (fluridone), ABA catabolism inhibitor (diniconazole), methyl jasmonate (MeJA), and NaCl. Ethylene effectively stimulated the germination of both haploid and diploid maize kernels. The ABA biosynthesis inhibitor fluridone, the ABA catabolism inhibitor diniconazole, and MeJA selectively stimulated the germination of haploid maize kernels. By contrast, gibberellin, 1-naphthaleneacetic acid (NAA), kinetin, and NaCl inhibited the germination of both haploid and diploid maize kernels. These results indicate that the germination of haploid maize kernels is selectively stimulated by fluridone and diniconazole, and suggest that ABA-mediated germination of haploid maize kernels differs from that of diploid maize kernels and other plant seeds.

A Study on the Polymer Nanocomposite for Corrosion Protection (내식 방지용 고분자 나노복합재료에 관한 연구)

  • Lyu, Sung Gyu;Park, Se Hyeong;Park, Chan Sup;Cha, Jong Hyun;Sur, Gil Soo
    • Applied Chemistry for Engineering
    • /
    • v.16 no.2
    • /
    • pp.212-216
    • /
    • 2005
  • Benzotriazole which is used as a corrosion inhibitor for the zinc coated steel was intercalated into Na-MMT. X-ray diffraction experiments on intercalant/silicate composite samples demonstrated that the intercalation of intercalant leads to an increase in the spacing between silicate layers. Water soluble poly(ethylene-co-acrylic acid) (PEA) nanocomposites, to use as a coating agent, were prepared with these modified MMT. We found that mono-layered silicates were dispersed in PEA matrix and those resultants were exfoliated nanocomposites. From the result of salt spray test, we found that this coating agent prepared with water soluble poly(ethylene-co-acrylic acid) (PEA) nanocomposite provided good corrosion protection. These results were caused by decreasing the rate of oxygen permeation from silicate layers dispersed homogeneously in PEA matrix and the effect of corrosion inhibitor from benzotriazole.

An analysis of influence on chemical additives in gas hydrate formation (하이드레이트 제조시 다양한 화학물질 첨가에 의한 영향 분석)

  • Lee Young-Chul;Mo Yong-Gi;Cho Byoung-Hak;Baek Young-Soon
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.4 s.25
    • /
    • pp.23-29
    • /
    • 2004
  • This work carried out experiment to change characteristics of hydrate formation using various chemicals which are acetone, dimethylbutane, polyvinylalcohol, methanol and ethlyene glycol as additives in gas hydrate formation. Gas storage ability of formed hydrate with acetone, firnethylbuthane and polyvinylalcohol in gas hydrate formation increased higher than that obtained with pure water. Among them polyvinylalcohol showed best gas storage ability, so it is a more useful promoter Methanol and Ethylene gl?col in using additives showed the characteristics of inhibitor and methanol is lower gas storage ability than ethylene gl)rcol as a inhibitor in hydrate formation, so it is a more useful inhibitor. But, low concentration of methanol and ethylene glycol showed considerably higher gas storage ability of hydrate than that obtained with Pure water and showed the characteristics of promoter in gas hydrate formation.

  • PDF

Evaluation of Inhibition Efficiency of Thymus Extract as a Corrosion Inhibitor of Aluminum Alloy 5083 in an Ethylene Glycol/NaCl Corrosive Medium

  • H. Hachelef;R. Mehdaoui;K. Hachama;M. Amara;A. Khelifa;A. Benmoussat;M. Hadj Meliani;Rami K. Suleiman
    • Corrosion Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.314-321
    • /
    • 2023
  • The aim of the present study was to investigate the effect of thymus extract on corrosion inhibition of aluminum 5083 alloy in a 0.1 M NaCl medium prepared using a mixture of ethylene glycol and water using potentiodynamic and electrochemical impedance spectroscopy (EIS) techniques. The potentiodynamic electrochemical technique showed an increase in corrosion inhibition efficiency starting from 49.63% at a concentration of 0.25 g/L to 92.71% at a maximum concentration of 1.25 g/L of the extract. These results were consistent with those obtained via EIS analysis. Spectral characterization of the tested plant extract using the Fourier-transform infrared spectroscopy (FTIR) technique confirmed the presence of organic compounds having different oxygen and aromatic functionalities in the extract that could help enhance the adsorption of these compounds on the aluminum surface. This study reveals possible adsorption isotherm of the thymus extract on the aluminum surface, supporting a Langmuir isotherm for the adsorption of inhibitor molecules on this surface.

Determination of Icing Inhibitors (Ethylene Glycol Monomethyl Ether and Diethylene Glycol Monomethyl Ether) in Ground Water by Gas Chromatography-Mass Spectrometry

  • Shin, Ho-Sang;Jung, Dong-Gyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.6
    • /
    • pp.806-808
    • /
    • 2004
  • A gas chromatography/mass spectrometric assay method has been developed for the simultaneous determination of icing inhibitors, ethylene glycol monomethyl ether and diethylene glycol monomethyl ether in ground water contaminated with JP-8. Ethylene glycol monobutyl ether and ethylene glycol monoethyl ether were used as the internal standard and surrogate, respectively. 100 mL of ground water was extracted twice with 20 mL of methylene chloride. The extract was concentrated to dryness, dissolved with 100 ${\mu}$L of methanol and analyzed by GC-MS (SIM). The use of an Innowax column gave the peaks good chromatographic properties, and the extraction of these compounds from samples gave recoveries of about 50% with small variations. The method detection limits of the target compounds were in a range of 0.5-0.8 ng/mL in ground water.

Precursors for the Ethylene Evolution of Pseudornonas syringae pv. Phaseolicola (Pseudomonas syringae pv. Phaseolicola에 의한 Ethylene 생성에서의 전구물질)

  • Bae, Moo;Kweon, Hea-Young
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.1
    • /
    • pp.14-20
    • /
    • 1991
  • - The purpose of this work is to investigate the effects of various substrates on biosynthesis of ethylene by the Kudzu strain of Pseudomonas syn'ngae pv. Phaseolicola causing halo blight. In the intact cell of P. sym'ngue, optimal condition for ethylene production was achieved at p1-I 7.5 and $30^{\circ}C$ for 9 to 10 hours of culture. Ethylene was most effectively produced from amino acids such as Asn, Gln, Asp ans Glu, compared to those of various kinds of sugars. While ethylene production from $\alpha$-ketoglutarate ($\alpha$-KG) was gradually increased throughout 51 hours incubation period tested. Ethylene production derived from citrate, $\alpha$-KG and oxalacetate as well as a few amino acids was further enhanced by the addition of histidine or arginine. In cell-free ethylene-forming system, ethylene was most effectively produced from $\alpha$-KG, compared to those from citrate, oxalacetate, Glu, Arg, or Asp, at 0.5 mM among the range from 0.25 mM to 5 mM. Anlinooxyacetate, an inhibitor of a pyridoxal phosphate-linked enzyme, completely inhibited ethylene evolution derived from Glu but not affect that derived from $\alpha$-KG. The results obtained in this work suggest that $\alpha$-KG might be a direct precursor of ethylene production in this organism than any other substrates tested.

  • PDF

Ethylene Production and Accumulation in Leaf Sheath and Its Relation to Tillering Suppression of Deep-Irrigated Rice Plants

  • Myung Eul-Jae;Kwon Yong-Woong;Lee Byun-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.5
    • /
    • pp.363-367
    • /
    • 2004
  • The deep irrigation of rice plants brings about some beneficial effects such as reduced tiller production which results in the formation of bigger panicles, prevention of chilling injury, reduced weed growth, etc. The present study was carried out to examine the involvement of ethylene in the suppression of tiller production due to deep water irrigation in rice (cv. Dongjinbyeo). The ethylene production was induced in leaf sheath within 24 hours after the deep water irrigation and has increased even until 30 days after the treatment, recording 4.5-fold increase as compared to the shallow-irrigated rice plants. In the deep water irrigated rice plants, ethylene was accumulated to a high concentration in the air space of submerged leaf sheath as the irrigated water deterred the diffusion of ethylene out of the leaf sheath and ethylene biosynthesis was accelerated by the deep irrigation as well. The ethylene concentration recorded 35-fold increase in the deep-irrigated rice plants for 35 days. The tiller production was reduced significantly by the deep irrigation with water, the tiller bud, especially tertiary tiller bud differentiation being suppressed by the deepwater irrigation treatment, whereas the rice plants deep-irrigated with solutions containing $10^{-5}$ M or $10^{-6}$ M silver thiosulfate (STS), an action inhibitor of ethylene, showed the same or even higher production of tillers than those irrigated shallowly with water. This implies that the ethylene is closely linked with the suppression of tiller production due to deep water irrigation. In conclusion, ethylene, which was induced by hypoxic stress and accumulated in the leaf sheath due to submergence, played a key role in suppressing the tiller production of the deepwater irrigated rice.

Pharmacological Effects of Mungbean Trypsin Inhibitor (MBTI) and MBTI-polymer Conjugate (Mungbean Trypsin Inhibitor(MBTI) 및 MBTI-polymer 포합체의 약물학적 특성)

  • 김상율;신영희
    • YAKHAK HOEJI
    • /
    • v.48 no.1
    • /
    • pp.82-87
    • /
    • 2004
  • Mungbean trypsin inhibitor (MBTI) was isolated and purified from Mung bean which has been used as a galenic and traditional food. MBTI and poly(ethylene glycol) were conjugated by using water soluble carbodiimide. We evaluated the therapeutic value of the MBTI and MBTI-PEG conjugate using animal models, sublethal septic shock model in guinea pig caused by pseudomonal elastase, shock model in rat caused by lipopolysaccharide, and the vascular permeability test by using pseudomonal elastase. In two shock model in guinea p Is and in rat, hypotesion shock was inhibited by pretreatment of MBTI. And also the vascular permeability caused by pseudomonal elastase reduced by pretreatment of MBTI. Also, therapeutic value of the MBTI-PEG conjugate was evaluated by using the sublethal septic shock model caused by pseudomonal elastase. The MBTI-PEG conjugate was more effective than native MBTI against pseudomonal elastase induced septic shock in guinea pig model.

Comparison of the Change in Quality and Ethylene Production between Apple and Peach Fruits Treated with 1-Methylcyclopropene (1-MCP) (1-Methylcyclopropene (1-MCP) 처리에 따른 사과와 복숭아 과실의 품질 및 에틸렌 생성 변화의 비교)

  • Choi Seong-Jin
    • Food Science and Preservation
    • /
    • v.12 no.6
    • /
    • pp.511-515
    • /
    • 2005
  • The responses of 'Tsugaru' apple and 'Baekhyang' peach fruits treated with 1-MCP, the ethylene inhibitor, were compared. In Tsugaru apple fruits, the reduction of flesh firmness and titratable acidity were significantly retarded for 2 weeks by the treating fruits with 1 or 5 ppm of 1-MCP immediately after harvest The respiration decreased continually for 2 weeks and the onset of ethylene production were also retarded severely. However, in Baekhyang peach fruits, the effects of 1-MCP treatment on the respiration and ethylene production were only transient and the firmness reduction was retarded slightly by the repeated 1-MCP treatments. The responsiveness of the Baekhyang peach fruits on ethylene seems to be recovered rapidly after 1-MCP treatment. In case of Baekhyang fruits, the 1-MCP should be treated repeatedly for effective ethylene inhibition, and the ethylene accumulation should be avoided during the 1-MCP treatment.