• Title/Summary/Keyword: Ethylene

Search Result 3,590, Processing Time 0.028 seconds

Improvement of Shelf-life and Quality in Fresh-Cut Tomato Slices:

  • Hong Ji Heun
    • Proceedings of the Korean Society of Postharvest Science and Technology of Agricultural Products Conference
    • /
    • 2004.10a
    • /
    • pp.67-72
    • /
    • 2004
  • Quality of fresh-cut tomato slices was compared during cold storage under various modified atmosphere packaging conditions. Chilling injury of slices in containers sealed with Film A was higher than with Film B; these films had oxygen transmission rates of 87.4 and 60.0 ml $h^{-1}\;m^{-2}\;atm^{-1}$ at $5^{\circ}C\;and\;99\%$ RH, respectively. While slices in containers with an initial atmospheric composition of air, $4\%\;CO_2+1\;or\;20\%\;O_2,\;8\%\;CO_2+1\;or\;20\%\;O_2,\;or\;12\%\;CO_2+20\%\;O_2$ showed fungal growth, slices in containers with $12\%\;CO_2+1\%\;O_2$ did not. Low ethylene in containers enhanced chilling injury. Modified atmosphere packaging provided good quality tomato slices with a shelf-life of 2 weeks or more at $5^{\circ}C$. Experiments were conducted to compare changes in quality of slices of red tomato (Lycopersicon esculentum Mill. 'Sunbeam') fruit from plants grown using black polyethylene or hairy vetch mulches under various foliar disease management systems including: no fungicide applications (NF), a disease forecasting model (Tom-Cast), and weekly fungicide applications (WF), during storage at $5^{\circ}C$ under a modified atmosphere. Slices were analyzed for firmness, soluble solids content (SSC), titratable acidity (TA), pH, electrolyte leakage, fungi, yeasts, and chilling injury. With both NF and Tom-Cast fungicide treatments, slices from tomato fruit grown with hairy vetch (Vicia villosa Roth) mulch were firmer than those from tomato fruit grown with black polyethylene mulch after 12 days storage. Ethylene production of slices from fruit grown using hairy vetch mulch under Tom-Cast was about 1.5- and 5-fold higher than that of slices from WF and NF fungicide treatments after 12 days, respectively. The percentage of water-soaked areas (chilling injury) for slices from tomato fruit grown using black polyethylene mulch under NF was over 7-fold that of slices from tomato fruit grown using hairy vetch under Tom-Cast. When stored at $20^{\circ}C$, slices from light-red tomato fruit grown with black polyethylene or hairy vetch mulches both showed a rapid increase in electrolyte leakage beginning 6 hours after slicing. However, slices from tomato fruit grown using the hairy vetch mulch tended to have lower electrolyte leakage than those grown with black polyethylene mulch. These results suggest that tomato fruit from plants grown using hairy vetch mulch may be more suitable for fresh-cut slices than those grown using black polyethylene mulch. Also, use of the disease forecasting model Tom-Cast, which can result in lower fungicide application than is currently used commercially, resulted in high quality fruit for fresh-cut processing. Experiments were conducted to determine if ethylene influences chilling injury, as measured by percentage of slices exhibiting water-soaked areas in fresh-cut tomato slices of 'Mountain Pride' and 'Sunbeam' tomato (Lycopersicon esculentum Mill.). Ethylene concentration in containers without ventilation significantly increased during storage at $5^{\circ}C$, whereas little or no accumulation of ethylene occurred in containers with one or six perforations. Chilling injury was greatest for slices in containers with six perforations, compared to slices in containers with one perforation, and was over 13-fold greater than that of slices in control containers with no perforations. An experiment was also performed to investigate the effectiveness of including an ethylene absorbent pad in containers on subsequent ethylene accumulation and chilling injury. While ethylene in the no-pad controls increased continually during storage of both 'Mountain Pride' and 'Sunbeam' tomatoes at $5^{\circ}C$ under modified atmosphere conditions, no increase in accumulation of ethylene was observed in containers containing ethylene absorbent pads throughout storage. The ethylene absorbent pad treatment resulted in a significantly higher percentage of chilling injury compared with the no-pad control. In studies aimed at inhibiting ethylene production using AVG during storage of slices, the concentration of ethylene in control containers (no AVG) remained at elevated levels throughout storage, compared to containers with slices treated with AVG. Chilling injury in slices treated with AVG was 5-fold greater than that of controls. Further, we tested the effect of ethylene pretreatment of slices on subsequent slice shelf-life and quality. In slices treated with ethylene (0, 0.1, 1, or $10\;{mu}L\;L^{-1}$) immediately after slicing, ethylene production in non-treated controls was greater than that of all other ethylene pre-treatments. However, pretreatment of slices 3 days after slicing resulted in a different pattern of ethylene production during storage. Ihe rate of ethylene production by slices treated with 1 L $L^{-1}$ ethylene 3 days after slicing was greater during storage than any of the other ethylene treatments. With slices pre-treated with ethylene, both immediately and 3 days after slicing, the rate of ethylene production tended to show an negative correlation with chilling injury. Chemical name used: 1-aminoethoxyvinylglycine (AVG).

  • PDF

Ethylene Production and Internal Structure of Developing Maize Seeds (옥수수 종자의 발육 중 ethylene 발생과 내부형태 변화)

  • Lee Suk-Soon;Seo Jung-Moon;Hong Seung-Beom
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.5
    • /
    • pp.425-431
    • /
    • 2006
  • In order to investigate the effects of ethylene on the seed development of three corn types (dent, sweet, and super sweet corns), aminoethoxyvinyl glycine (AVG) and silver thiosulfate (STS) and ethephon (2-chloroethylphosphonic acid, CEPA) were applied either on whole plants or shanks of ears at 9 and 21 days after silking. Ethylene production of developing super sweet corn seeds was much higher than those of sweet and dent corns. The cavity in the endosperm tissues of the super sweet corn started earlier and endosperm was collapsed more severely compared to those of sweet and dent corns. Ethylene production seemed to be related to the death of endosperm cells to form a cavity. Application of AVG and STS reduced ethylene production and delayed cavity formation in endosperm of super sweet corn seeds, while CEPA increased ethylene production and enhanced the time of cavity formation. AVG and STS increased 100-seed weight, while CEPA decreased.

Injury Responses of Landscape Woody Plants to Air Pollutants - Visible Injury and Ethylene Production - (조경수목(造景樹木)의 대기오염물질(大氣汚染物質)에 대한 피해반응(被害反應)(II) - 엽피해(葉被害)와 Ethylene 발생량(發生量)을 중심으로 -)

  • Kim, Myung Hee;Lee, Soo Wook
    • Journal of Korean Society of Forest Science
    • /
    • v.82 no.4
    • /
    • pp.328-336
    • /
    • 1993
  • This study was conducted to investigate sensitivity of tree seedlings to $SO_2$. Visible injury symptoms and changes of ethylene production were investigated in tree seedlings with the fumigation of $SO_2$ in gas chamber 4 hours a day for six days. The symptoms of visible injury did not appear below 0.5ppm level of $SO_2$ exposure but a change of visible injury with the passage of time appeared at 1.5 and 2.5ppm in all seedlings. With the higher the concentration and/or the longer exposure of $SO_2$ the visible injury symptoms on leaves increased in all seedlings. The sensitivity of seedlings to $SO_2$ was the highest in Liriodendron tulipifera followed by Pinus strobus, Ginkgo biloba, Pinus densiflora and Pinus koraiensis. The amount of ethylene production was more at 1.5 and 2.5ppm of $SO_2$ exposure than at 0.5ppm and the peak time of it came faster at higher levels. The amount of ethylene production was significantly different among tree seedlings. It showed a higher at production of ethylene in Liriodendron tulipifera compared to Ginkgo biloba and the ethylene production of Pinus trees to $SO_2$ were the highest in Pinus strobus followed by Pinus densiflora and Pinus koraiensis. In needle of Pinus strobus the ethylene production increased with the increasing rate of visible injury until the injury rate of 40-50% and than decreased with the increasing rate of visible injury since the rate of 50%.

  • PDF

Ethylene Production and Accumulation in Leaf Sheath and Its Relation to Tillering Suppression of Deep-Irrigated Rice Plants

  • Myung Eul-Jae;Kwon Yong-Woong;Lee Byun-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.5
    • /
    • pp.363-367
    • /
    • 2004
  • The deep irrigation of rice plants brings about some beneficial effects such as reduced tiller production which results in the formation of bigger panicles, prevention of chilling injury, reduced weed growth, etc. The present study was carried out to examine the involvement of ethylene in the suppression of tiller production due to deep water irrigation in rice (cv. Dongjinbyeo). The ethylene production was induced in leaf sheath within 24 hours after the deep water irrigation and has increased even until 30 days after the treatment, recording 4.5-fold increase as compared to the shallow-irrigated rice plants. In the deep water irrigated rice plants, ethylene was accumulated to a high concentration in the air space of submerged leaf sheath as the irrigated water deterred the diffusion of ethylene out of the leaf sheath and ethylene biosynthesis was accelerated by the deep irrigation as well. The ethylene concentration recorded 35-fold increase in the deep-irrigated rice plants for 35 days. The tiller production was reduced significantly by the deep irrigation with water, the tiller bud, especially tertiary tiller bud differentiation being suppressed by the deepwater irrigation treatment, whereas the rice plants deep-irrigated with solutions containing $10^{-5}$ M or $10^{-6}$ M silver thiosulfate (STS), an action inhibitor of ethylene, showed the same or even higher production of tillers than those irrigated shallowly with water. This implies that the ethylene is closely linked with the suppression of tiller production due to deep water irrigation. In conclusion, ethylene, which was induced by hypoxic stress and accumulated in the leaf sheath due to submergence, played a key role in suppressing the tiller production of the deepwater irrigated rice.

Effect of Benzyladenine on the IAA-Induced Ethylene Production in the Primary Roots of Maize (옥수수 일차뿌리에서 benzyladenine이 IAA에 의해 유도된 에틸렌 생성에 미치는 영향)

  • Song, Seong-Hee;Park, Ji-Hye;Kim, Soon-Young
    • Journal of Life Science
    • /
    • v.20 no.5
    • /
    • pp.745-749
    • /
    • 2010
  • This study was conducted to examine the effect of cytokinin ($N^6$-benzyladenine; BA) and/or an IAA on ethylene production of maize (Zea mays) primary roots. When the two hormones were applied exogenously, both hormones synergistically increased ethylene production, which was greater than the sum of the level of each hormone's effect. For example, the ethylene production was stimulated between about 87% and 170% of the control by $10^{-4}\;M$ BA with $10^{-4}\;M$ IAA for 8 hours respectively, whereas the ethylene production was increased by about 480% of the control when the two hormones were treated simultaneously. Such a synergistic effect was also found in changes in the activity and gene expression level of ACC synthase. However, in the case of ACC oxidase did not show any observable effects. Based on our results, it is possible to conclude that BA and IAA stimulated the ethylene production synergistically by affecting the ACC synthase in maize roots.

Biodegradation of Ethylene in an Activated Carbon Biofilter

  • Kim, Jong-O;Chung, Il-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.E2
    • /
    • pp.79-84
    • /
    • 2002
  • The objective of this study was to investigate the biodegradation of ethylene in an activated carbon biofilter inoculated with immobilized microbial consortium. The biofilter performance was monitored in terms of ethylene removal efficiency and carbon dioxide production. The biofilter was capable of achieving ethylene removal efficiency as much as 100% at a residence time of 14 min and an inlet concentration of 290 ppm. Under the same conditions, carbon dioxide with a concentration of up to 546 ppm was produced. Its was found that carbon dioxide was produced at a rate of 87 mg day$\^$-1/, which corresponded to a volume of 0.05 L day$\^$-1/. During operation with an inlet ethylene of 290 ppm, the maximum elimination capacity of the biofilter was 34 g of C$_2$H$_4$m$\^$-3/ day$\^$-1/. The biofilter could provide an attractive treatment technology for removing ethylene, an extremely volatile and slowly adsorbed compound.

Studies on Physiological Action of Ethylene in Rice Plant IV. Effect of Methionine and ACC on Ethylene Evolution Seedling and Leaf Blade of Rice (벼에 대한 Ethylene의 생리작용에 관한 연구 IV. 벼 유묘와 엽의 Ethylene 생성량에 미치는 Methionine 및 1-Aminocyelopropane-1-Carboxylic Acid의 영향)

  • Lee, Moon-Hee;Ota, Yasuo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.30 no.2
    • /
    • pp.184-189
    • /
    • 1985
  • The experiments were carried out to know the effect of methionine (precursor) and l-aminocyclopropane-1-carboxylic acid (ACC, direct precursor) on ethylene evolution in rice plant. Wher rice seedlings and leaves were incubated with various concentrations of methionine and ACC, the amount of ethylene evolution increased, but at high nitrogen levels the ethylene evolution decreased.

  • PDF

Degradation of Ethylene by a Biofilter (Biofiter를 이용한 에틸렌 분해)

  • 김종오
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.3
    • /
    • pp.269-276
    • /
    • 2001
  • The objective of this study was to investigate the biodegradation of ethylene in an biofilter inoculated with ethylene-oxidizing microorganisms. The biofilter performance was monitored in terms of ethylene removal efficiency and carbon dioxide production. The biofilter was capable of achieving the ethylene removal efficiency as much as 100% at a residence time of 14 min and an inlet concentration of 290 ppm. Under the same conditions, carbon dioxide with a concentration of up to 546 ppm was produced. It was found that carbon dioxide was produced at a rate of 87 mg/day, which corresponded to a volume of 0.05 L/day. Observable features of the ethylene-oxidizing microorganisms, meaning microbial activity occurrence in the biofilter, were investigated with the microscopy analysis.

  • PDF

The Mechanism of Polyamines on Ethylene Biosynthesis in Tobacco Suspension Cultures (담배 현탁 배양세포에서 Ethylene 생합성에 미치는 Polyamine의 작용기작)

  • 이순희
    • Journal of Plant Biology
    • /
    • v.31 no.4
    • /
    • pp.267-275
    • /
    • 1988
  • Effects of polyamines on ethylene biosynthesis were studied in synchronized suspension cultured cells from leaf segments of Nicotiana tabacum L. Putrescine, spermidine and spermine inhibited the endogenous production of both ACC and ethylene. Those production was more remarkably inhibited by spermidine and spermine than putrescine. These results were the same tendency with those obtained from exogenous application of SAM and ACC. Polyamines had more inhibitory effect on hte conversion of ACC to ethylene than that of SAM to ACC, but ACC was not accumulated. The inhibition rate of exogenously applied ACC conversion to ethylene was well coincident with that of exogenously applied SAM conversion to ethyene via ACC by polyamines. However, polyamines inhibited more the activity of ACC synthase than that of EFE. From these results we can suggest that polyamines inhibit both steps of SAM to ACC and ACC to ethylene, and more effectively the latter than the former.

  • PDF

Effects of Calcium and Galactose on the Ethylene Production of Persimmon Fruits (감과실의 에틸렌 생성에 미치는 칼슘과 Galactose의 영향)

  • 김미현;신승렬
    • Food Science and Preservation
    • /
    • v.5 no.1
    • /
    • pp.29-34
    • /
    • 1998
  • This study was carried out to investigate the effects of calcium and galactose treatments on ethylene productions in persimmon fruits for the study on the study of persimmon fruits. Ethylene was producted in green mature persimmon fruits treated with water, calcium and galactose after 24hrs of treatment. Ethylene productions of persimmon fiuits treated with galactose was very higher than those of persimmon fruits treated with water and calcium after 72hrs of treatment. Ethylene productions of persimmon fruits teated with water and calcium were similarly to that of persimmon fruit tested with calcium. The treatment of glucose was not effected on ethylene production of persiommn fruits. The ACC contents and ACC synthase activity in persimmon fruit treated with galactose were higher than those of other groups after 72hrs of storage, but the ACC contents and ACC synthase activity of persimmon fruits treated with calcium were lower than those of control and persimmon fruits treated with water.

  • PDF